

Forets à une lèvre/deux lèvre

Type 110, 112, 113, 113-HP, 114, 115, 120, 122, 123, 125

Outils de forage dans le plein et de réalésage Outils de carottage

botek Assistant

Google Play

App Store

L'entreprise botek

botek, spécialiste global des outils de coupe, emploie environ 750 personnes dans son établissement principal de Riederich, en Allemagne. Près de la Schwäbische Alb, avec des sites de production en France, en Hongrie et en Inde ainsi que plus de 50 partenaires de vente et d'assistance internationaux, est présent dans le monde entier.

Depuis près de 50 ans, nous nous concentrons sur le développement et la production d'outils de perçage, d'outils de forage profond de diamètres compris entre 0,5 et 1500 mm, de fraises et d'outils d'alésage, ainsi que sur les services associés. Aujourd'hui, cette spécialisation se poursuit également avec succès au niveau de la deuxième génération, de manière durable et orientée vers l'innovation.

À l'ère des bouleversements technologiques, de nouvelles exigences requièrent toutefois une nouvelle façon de penser.

Désormais, nous ne nous concentrons plus uniquement sur le développement et la production d'outils, mais nous les complétons judicieusement par une gestion de projet innovante et ciblée.

Les concepts de conception et d'optimisation des processus où le développement et la mise en œuvre de projets clés en main complets sont notre ambition, une équipe expérimentée de techniciens et de chefs de projet mettent tout en œuvre en étroite collaboration avec nos clients.

La technologie botek montre la voie – maintenant et dans le futur.

- Veuillez prendre en compte nos consignes de sécurité présentées sur notre site Internet www.botek.fr.
- Toutes nos opérations sont soumises à nos conditions générales de vente desquelles vous êtes censé avoir parfaite connaissance.
- Nous nous réservons toutes modifications résultant d'un développement évolutif technologique.
 Celles-ci ne peuvent donner lieu à une réclamation.
- Toutes les modifications, les fautes d'impression et erreurs sont réservées.
- © botek Präzisionsbohrtechnik GmbH

botek – la compétence d'un partenaire spécialisé dans les outils de forage

Sommaire

P. 2 Lentreprise bote	P. 2	L'entreprise b	otek
-----------------------	------	----------------	------

P. 2 Conditions commerciales, informations importantes

P. 3 Sommaire

Outils

Type 113 / Type 113-HP / Type 110 / Type 112 / Type 114 / Type 115

P. 4 Les avantages en un coup d'œil

P. 5 Le procédé de forage à une lèvre et les conditions

de sa mise en œuvre

Forets à une lèvre en carbure monobloc

Type 113/Type 113-HP

P. 6 Présentation des typesP. 6 Conception des outils

P. 6 Affûtage

P. 7 Exemples d'application Type 113-HP

P. 8 Outils de forage dans le plein et de réalésage

P. 8 Tube du foret
P. 9 Douilles de serrage

Annexe technique

P. 10/11 Valeurs indicatives Type 113
P. 12/13 Valeurs indicatives Type 113-HP

Foret à une lèvre avec tête brasée

Type 110 / Type 112 / Type 114 / Type 115

P. 14 Présentation des types P. 14 Conception des outils

P. 15 Tête de forage (géométrie périphérique et affûtage)
P. 16 Outils de forage dans le plein (Type 110, Type 112, Type 01)
P. 17 Outils de réalésage et de carottage (Type 114, Type 115)

P. 17 Tube du foret

P. 18/19 Douille de serrage

Annexe technique

P. 20/21 Valeurs indicative Type 110

Outils

Type 123/Type 123-01/Type 123-02/Type 120/Type 122/Type 125/Type 125-03

P. 22 Les avantages en un coup d'œil

P 23 Conditions d'application des forets à deux lèvres de coupe

Forets à deux lèvres en carbure monobloc (à goujures droites)

Type 123

P. 24 Présentation des types
P. 24 Conception des outils
P. 24 Affûtage standard
P. 25 Douilles de serrage

Annexe technique

P. 26 Valeurs indicatives Type 123

Foret à deux lèvres de coupe avec tête de forage soudée

Type 120/Type 122/Type 125

P. 27 Présentation des types
P. 27 Conception des outils
P. 27 Affûtage standard
P. 28/29 Douilles de serrage

Annexe technique

P. 30 Valeurs indicatives Type 120 / Type 122 / Type 125

P. 31 Instruction d'affûtage

Annexe technique

P. 32/33 Qualité de forageP. 32 Déviation du forageP. 32 Rectitude du forage

P. 32 Circularité

P. 33 Tolérances de forage réalisables

P. 33 Etat de surface P. 34/35 Annexe technique

Accessoires d'usinage

 P. 36 Type 113/Type 113-HP/Type 110/Type 112/ Type 114/Type 115
 P. 37 Type 123/Type 120/Type 122/Type 125
 P. 38 Accessoires d'usinage

Système d'arrosage – rotatif

P. 39 Pour outils de perçage profond avec arrosage intérieur – Ø d'outil 2,50 à 115,00 mm

Accessoires d'usinage

P. 40 Pulsateur axial

Coffre de mesure de la pression du lubrifiant

P. 41 Valises de mesure pour le contrôle de la pression du lubrifiant sur les centres d'usinage et les perceuses profondes

Machines à rectifier

P. 42 Affûteuse d'outils Type MS-01

P. 42 Rectifieuse multipostes MS-12 et MS-12/3

Supports de ponçage / accessoires MS-01

P. 43 Dispositif de ponçage botek ZS / PSP. 43 Meule double / Meule boisseau

Programme de stock

P. 44 des forets à une lèvre monobloc en version haute performance Type 113-HP
P. 45 des forets à une lèvre monobloc Type 113

Fabrication express

P. 46/47 Forets à une lèvre monobloc Type 113

Programme de stock / Fabrication express

P. 48/49 Forets à une lèvre avec tête brasée Type 110
 P. 50 Foret pilote en carbure monobloc avec lubrification interne Type 153-03

Formulaire

 P. 51 Formulaire de demande / commande Type 113/Type 113-HP/Type 110
 P. 52 Formulaire de demande / commande Type 123/Type 120
 P. 53 Fabrication express

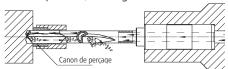
Service

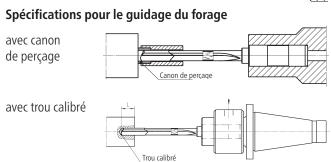
P. 54/55 Service

Les avantages en un coup d'œil

Type 113 / Type 113 - HP / Type 110 / Type 112 / Type 114 / Type 115

- 1. Exécution économique de forages profonds et précis.
- 2. Outils de qualité botek pour un rendement élevé.
- 3. Faible décentrage axial du foret.
- 4. Excellente qualité de forage et écoulement sans problème des copeaux.
- 5. Haute sécurité d'usinage.
- 6. Longueurs d'outil possibles jusqu'à 5.000 mm, selon le type et le diamètre requis.
- 7. Tolérances de diamètre possibles sous réserve jusqu'à IT 7.
- 8. Spécialement adapté pour l'utilisation sur les centres d'usinage (foreuses, tours et / ou fraiseuses) avec groupe d'arrosage haute pression.
- 9. Possibilité d'une lubrification en micro pulvérisation (MQL) dans certaines conditions d'utilisation.
- 10. Les outils peuvent s'utiliser horizontalement ou verticalement, tournants ou non tournants ainsi que dans une combinaison de ces différentes options.
- 11. Les outils peuvent être réaffûtés chez botek ou dans votre établissement (voir brochure: Machines à affûter botek).
- 12. Les forêts une lèvre sont ajustés pour répondre de façon optimale aux spécifications d'usinage, en étroite collaboration avec le client.
- 13. Chaque outil est la somme de 40 ans d'expérience dans la fabrication et la mise en œuvre d'outils de forage.
- 14. Nous développons et fabriquons des outils pour tous les procédés de forage (une lèvre, systèmes BTA et Ejektor).
- 15. Le foret à une lèvre en carbure monobloc (Type 113) a été mis ou point en 1982 par botek et est fabriqué depuis dans nos ateliers. Cette innovation a permis pour la première fois de réaliser des forages dans des diamètres inférieurs à 2 mm ce qui a notamment posé les bases technologiques pour la production de systèmes d'injection de carburant modernes.
- 16. botek est le leader mondial du marché des forets à une lèvre.


Le procédé de forage à une lèvre et les conditions de sa mise en œuvre


Le forage profond avec foret à une lèvre est caractéristique car l'alimentation en liquide de coupe se fait par le centre de l'outil et plus précisément par une canalisation interne, et que la sortie du liquide ainsi que celle des copeaux s'effectue au niveau de la goujure en V du corps du foret.

Ceci est seulement possible si le lubrifiant de coupe, c'est-à-dire l'huile de forage profond ou l'émulsion (concentration min. 10 - 12%, avec additifs) sont disponibles en quantité et pression suffisantes (valeurs du lubrifiant de coupe, voir p. 10 + 11 et p. 20 + 21).

Dans certaines conditions, il est possible de faire appel à la lubrification en quantité minimale (MQL).

Il est préférable d'intégrer dans la machine des systèmes d'arrosage sous pression ou de s'en procurer auprès du fabricant de la machine sous forme de groupe de lubrification séparé. De cette façon, le forage peut très bien être mis en œuvre de façon économique non seulement sur des machines spéciales, mais également sur des centres d'usinage à commande numérique (tours, fraiseuses, perceuses).

Le foret à une lèvre est un outil de forage à une coupe sans centrage automatique. Lors du forage, l'outil doit être. guidé par un canon de perçage ou un trou calibré.

La qualité du guidage est déterminante pour la durée de vie de l'outil et pour éviter un décentrage axial.

Dimensionnement des diamètres et de la profondeur du trou calibré Type 113/113-HP

			Profonde	eur du trou calibré	é en fonction de la	a longueur de l'ou	til (sans douille)
	Diameter Outil	Diameter trou calibré	LxD		Profondeur o	lu trou calibré	
			Profondeur de perçage	Ø 0,500 - 1,599	Ø 1,600 - 3,999	Ø 4,000 - 6,999	Ø 7,000 - 12,000
F	0,500 mm - 4,000 mm	+ 0,005 bis + 0,010	bis 20xD		2,0 x D	2,0 x D	2,5 x D
	4,001 mm - 12,000 mm	+ 0,010 bis + 0,020	bis 30xD	3,0 x D	3,0 x D	3,0 x D	3,5 x D
0.00			bis 40xD		4,0 x D	4,0 x D	
			bis 50xD		6,0 x D		40 mm
			bis 60xD	6,0 x D	30 mm*	35 mm	40 mm
			> 60xD		30 111111		

Dimensionnement des diamètres et de la profondeur du trou calibré Type 110

			Profondo	eur du troi	u calibré e	n fonction	de la long	ueur de l'o	util (sans	douille)
	Diameter Outil	Diameter trou calibré	LxD			Profonde	eur du tro	u calibré		
			Profondeur de perçage	Ø 1,850 - 4,000	Ø 4,001 - 8,500	Ø 8,501 - 12,000	Ø 12,001 - 20,999	Ø 21,000 - 30,999	Ø 31,000 - 40,999	Ø 41,000 - 50,000
F	1,85 mm - 4,00 mm	+ 0,005 bis + 0,010	bis 10xD	2,0 x D	1,0 x D	1,0 x D	1,0 x D			
	4,01 mm - 12,00 mm	+ 0,010 bis + 0,020	bis 20xD	3,0 x D	1,5 x D	1,5 x D	1,5 x D		1 v D	1 x D
0.00	12,01 mm - 50,00 mm	+ 0,015 bis + 0,040	bis 25xD	3,0 x D	2,0 x D	2,0 x D	1,5 x D	1 x D	1 x D	
0,3			bis 30xD	3,0 x D	3,0 x D	3,0 x D	1,5 x D			
L			bis 35xD			30	0D 1.FD			
-			bis 40xD	*	*	3,0 x D	1,5 x D			

^{*} Pour les grandes longueurs par rapport au diamètre, nous vous recommandons de prendre contact avec notre **hotline technique ELB**: **T** +33 3870 2703-0. Les dimensions indiquées dans le tableau sont des valeurs indicatives. Pour éviter les éclats sur sur l'arête de coupe, une chanfrein en entrée « F » est recommandé selon le cas d'usinage.

[→] Veuillez consulter à ce sujet nos conseils d'utilisation aux pages 34 + 35.

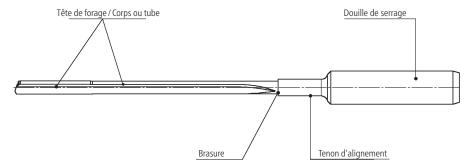
[→] Programme de stock des forets pilotes page 50.

Forets à une lèvre en carbure monobloc

Type 113 / Type 113-HP

Présentation des types

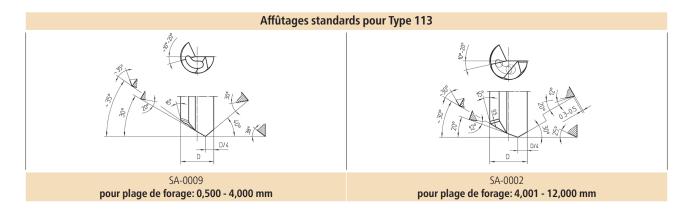
Types	Ø outil	
Type 113 Foret à une lèvre en carbure monobloc pour forage dans le plein	Canalisation de forme oblongue pour le passage de l'huile pour Ø outil: 0,500 - 12,000 mm	
Type 113-HP Foret à une lèvre en carbure monobloc pour forage dans le plein	Canalisation de forme oblongue pour le passage de l'huile pour Ø outil: 0,700 - 12,000 mm	
Type 113-01* Foret étagé à une lèvre en carbure monobloc pour forage dans le plein	Canalisation de forme oblongue pour le passage de l'huile pour Ø outil: 1,500 mm	
Type 113-02 Outil de forage à plaquette en carbure monobloc	Canalisation de forme oblongue pour le passage de l'huile pour Ø outil: 0,500 - 12,000 mm	


*Outil sur demande uniquement

Vous trouverez des informations sur le programme de stock / la fabrication express aux pages 44 - 47.

Conception des outils

La tête de forage et le tube sont fabriqués à partir d'une ébauche en carbure. Cet outil est garant d'une grande sécurité de processus et d'un rendement élevé. Grande durée de vie obtenue par l'absence de vibrations de torsion.


Dans ce type d'outil, la douille de serrage (acier) est réalisée avec un tenon d'alignement. La douille de serrage et le corps du foret sont reliés par une brasure.

Affûtage

Toute modification de la géométrie de coupe influence sur la tolérance du forage, la forme des copeaux, la rectitude du forage, la qualité de l'état de surface et la durée de vie de l'outil.

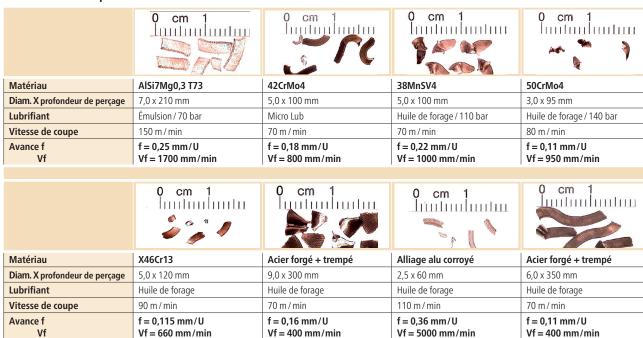
L'expérience ainsi acquise a servi de base au développement de nos affûtages standards. Presque tous les problèmes de forage peuvent être résolus grâce à ces affûtages. Pour le forage de matériaux à copeaux longs ou difficiles à usiner, il faut généralement faire appel à des affûtages spéciaux, le plus souvent combinés à un brise-copeaux. Nous réalisons ces affûtages spéciaux sur demande.

Exemples d'application

Type 113-HP

Ø 0,700 - 12,000 mm

Exécution haute performance en alternative au foret hélicoïdal


Résumé des avantages

- maximisation du rendement d'usinage
- avance par tour élevée, jusqu'à 800 % de plus
- parfait pour le forage de pièces en acier difficiles à usiner
- réaffûtage économique et rapide

Compatible avec les systèmes à huile de forage, lubrification en quantité minimale et émulsion haute qualité.

Géometrie des copeaux

Comparaison de foret hélicoïdal en monobloc et de foret à une lèvre en monobloc Type 113-HP

Pièce à usiner: vilebrequin, acier forgé

Diamètre:5,0 mmProfondeur de perçage:90 mmPression Micro Lub:8 bar

V: 76 m/min. (4800 tr /min)
Vf: 800 mm/min (0,17 mm/tr)

Résultat foret	hélicoïdal en carbure monobloc	Type 113-HP
Marge de tolérance du perçage	IT9/IT10	IT8
Qualité des surfaces Ra	1,5 - 3,0	0,8
Déroulement de perçage	> 0,15	< 0,1

Forets à une lèvre en carbure monobloc

Type 113/Type 113-HP

Outils de forage dans le plein et de réalésage

Exécution de la tête et du tube	Exécution en carbure monobloc							
Méthode d'usinage /	Out	ils de forage dans le p	lein	Outils de réalésage				
Type d'outil	Type 113	Type 113-HP	Type 113-01	Type 113-02				
Profil								
Plage de forage de - à (mm)	Ø = 0,500 - 12,000 mm	Ø = 0,500 - 12,000 mm Ø = 0,700 - 12,000 mm Ø = 1,500 mm Ø = 0,500 - 12,000 mm						
Longueur d'outil		Longueur sup	érieure à 100 x D possible					
Forme de la canalisation	Canalisation de forme oblongue							
Avantages	 forage de très petits diamètres exécution en carbure monobloc, cà-d. que la tête et le tube sont fabriqués d'un seul bloc ce qui augmente la rigidité de l'outil tout en réduisant la déviation, les vibrations et la torsion pendant l'usinage possibilité d'accroître l'avance par tour configuration variable des guides permettant un ajustement plus précis au type d'usinage à réaliser meilleurs rendements de coupe par rapport aux forets à une lèvre à tête brasée réaffûtable débit d'huile optimal grâce à la forme oblongue de la canalisation meilleure rigidité de l'outil minimisant la déviation de coupe 							
Géométrie périphérique botek optimise la géométrie périphérique en fonction du type d'usinage à réaliser!	- tous matériaux - adapté à presque to - faible tolérance de fo	-	- acier, acier inox - matériaux difficile - de préférence ave	es à usiner ec émulsion lubrifiante				
Attention: pour les formes EA et G, il n'est plus possible de mesurer précisément le diamètre d'outil après la fabrication!	- fonte, máteriaux ten - forage croisé - mauvaises condition		- aluminium, cuivre - faible tolérance d					
Géométrie périphérique spéciale		Egalement exécutable a	vec géométrie périphériqu	ue spéciale				
Affûtages spéciaux		Tous les outils peuvent	être fournis avec un affûta	ge spécial				
Revêtement		Veuillez indiqu	uer le revêtement souhaité					
Diamant / PCD		Sur demande	e, livrable avec coupe PCD					

Tube du foret

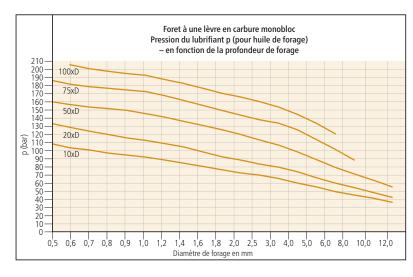
Le tube et la tête de forage sont fabriqués à partir d'une ébauche en carbure. La canalisation interne pour le passage du lubrifiant est de forme oblongue. La sortie du liquide ainsi que celle des copeaux s'effectuent au niveau de la goujure en V du corps du foret, également appelée collet. Dans les outils d'exécution standard, la goujure en V arrive jusqu'au niveau de la douille de serrage (tenon d'alignement). Selon le diamètre, les forets à une lèvre en carbure monobloc peuvent être réalisés avec des corps de longueur supérieure à 100 x D.

Douille de serrage

Les forets à une lèvre en carbure monobloc botek sont fournis complets avec douilles de serrage, c.à-d. que la douille de serrage et le corps du foret sont reliés par une brasure. Les douilles de serrage transmettent le couple de rotation de la machine au foret. La haute précision de concentricité entre le tube et la douille de serrage évite des vibrations excessives ce qui augmente le rendement d'usinage et la sécurité d'exploitation de l'outil. Les douilles de serrage botek sont réalisées dans une large gamme de dimensions normées, mais également selon les modèles ou dessins fournis par la clientèle.

Les douilles cylindriques (DIN 6535 HA) serrées dans un mandrin expansible hydraulique ou un porte-pince de serrage de précision avec joint garantissent des résultats de rotation précis, notamment dans les centres d'usinage.

Douilles de serrage avec tenon d'alignement (pour forets à une lèvre en carbure monobloc) – Présentation


D	ésignation			pour lon	gueur d	outil	.,	
DCON Douille (mm)	Туре	Profil	botek Référence	pour Ø foret (mm) de - à	LSC	LS avec tenon d'alignement	X = Longueur de méplat	TD = Filet
6		LSC NO	ZH6-03	0,500 - 4,649	30	45	17	
10	idèal pour mandrin expansible hydraulique et pinces de serrage	15 LSC Q 80	ZH10-15	0,500 - 6,349	55	70		M6x0,5
10		LSC P SO	ZH10-37	0,500 - 5,249	40	55	32,7	M6x0,5
10		LSC NO	ZH10-42	0,500 - 7,249	40	55	24	
12,7		LSC NO	ZH12,7-01	0,500 - 6,349	38	48	25,4	
12,7	idèal pour mandrin expansible hydraulique et pinces de serrage	LSC P NO	ZH12,7-09	0,500 - 6,349	51	65		M6x0,5
16		LSC D NOON	ZH16-75	0,500 - 8,049	80	105	37	M10x1
4	DIN 6535-HA		ZH4-08	0,500 - 5,149	34	46		
6	idèal pour man-		ZH6-12	0,500 - 4,649	36	50		
10	drin expansible	LSC N	ZH10-51	0,500 - 7,249	40	55		
12	hydraulique et pinces de serrage	LS	ZH12-27-1	0,500 - 8,049	45	60		
16	p.mees ac semage	. X	ZH16-86-1	0,500 - 8,049	48	63	20	
6	DINI CESE UE		ZH6-13	0,500 - 4,649	36	50	20	
10	DIN 6535-HB	100	ZH10-47	0,500 - 7,249	40	55	23,5	
12	DIN 1025 B	LSC N	ZH12-30	0,500 - 8,049	45	60	26,5	
16	DIN 1835-B	X X	ZH16-78-1 ZH6-01	0,500 - 8,049 0,500 - 4,649	48	63	29 25	
10	DIN 6535-HE		ZH6-01 ZH10-49	0,500 - 4,649	36 40	50 55	28	
12	ח-ככנט אווע	LCC Z	ZH10-49 ZH12-28	0,500 - 7,249	45	60	33	
16	DIN 1835-E	LSC NOO	ZH12-28 ZH16-89-1	0,500 - 8,049	48	63	36	
10	DIN 1033-L	LJ	21110-03-1	0,300 - 0,043	70	1 03	50	

Valeurs indicatives Type 113

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre en carbure monobloc (les valeurs indicatives pour le Type 113-HP figurent en pages 12 et 13)

Groupes de matériaux	Acier de construction non allié et acier de décolletage faiblement allié, acier traité, acier de cémentation, acier à outils, (< 900 N/mm²) «facilement usinable»	Aciers traités alliés, aciers de cémentation, aciers nitrurés, aciers à outils (> 900 N / mm²)	Acier inoxydable+ fonte d'acier, martensitique / ferritique 13-25% Cr (sulfuré) «facilement usinable»	Acier inoxydable+ fonte d'acier résistant aux acides, austénitique Ni > 8%, 18-25% Cr	
Vitesse de coupe m/min	70 - 80	60 - 70	40 - 50	30 - 40	
Foret-Ø		Avance (mm	n)/Rotation		
(mm)	de - à	de - à	de - à	de - à	
0,5 - 0,59	0,0002 - 0,0010	0,0003 - 0,0008	0,0004 - 0,0007	0,0002 - 0,0007	
0,6 - 0,69	0,0002 - 0,0011	0,0005 - 0,0010	0,0004 - 0,0008	0,0003 - 0,0008	
0,7 - 0,79	0,0003 - 0,0014	0,0007 - 0,0012	0,0006 - 0,0010	0,0005 - 0,0010	
0,8 - 0,89	0,0004 - 0,0017	0,0010 - 0,0016	0,0007 - 0,0014	0,0007 - 0,0012	
0,9 - 0,99	0,0007 - 0,0020	0,0009 - 0,0020	0,0009 - 0,0019	0,0011 - 0,0017	
1,0 - 1,09	0,0010 - 0,0026	0,0010 - 0,0026	0,0012 - 0,0024	0,0014 - 0,0020	
1,1 - 1,19	0,0014 - 0,0035	0,0013 - 0,0032	0,0015 - 0,0028	0,0016 - 0,0023	
1,2 - 1,39	0,0018 - 0,0045	0,0015 - 0,0041	0,0020 - 0,0033	0,0020 - 0,0028	
1,4 - 1,59	0,0021 - 0,0060	0,0021 - 0,0052	0,0025 - 0,0042	0,0025 - 0,0036	
1,6 - 1,79	0,0028 - 0,0079	0,0024 - 0,0066	0,0031 - 0,0054	0,0032 - 0,0045	
1,8 - 1,99	0,0030 - 0,0100	0,0030 - 0,0081	0,0039 - 0,0065	0,0040 - 0,0057	
2,0 - 2,49	0,0040 - 0,0130	0,0040 - 0,0100	0,0050 - 0,0080	0,0050 - 0,0070	
2,5 - 2,99	0,0060 - 0,0170	0,0050 - 0,0140	0,0080 - 0,0120	0,0080 - 0,0100	
3,0 - 3,99	0,0080 - 0,0210	0,0070 - 0,0180	0,0120 - 0,0160	0,0110 - 0,0140	
4,0 - 4,99	0,0120 - 0,0290	0,0080 - 0,0270	0,0170 - 0,0220	0,0160 - 0,0200	
5,0 - 5,99	0,0150 - 0,0370	0,0120 - 0,0350	0,0240 - 0,0300	0,0230 - 0,0260	
6,0 - 7,99	0,0200 - 0,0460	0,0170 - 0,0450	0,0330 - 0,0390	0,0310 - 0,0340	
8,0 - 9,99	0,0240 - 0,0610	0,0210 - 0,0620	0,0430 - 0,0510	0,0400 - 0,0440	
10,0 - 12,00	0,0300 - 0,0780	0,0270 - 0,0790	0,0550 - 0,0640	0,0500 - 0,0560	
Huile de forage		très bier	n adapté		
Émulsion				non adapté	
Micro Lub		adapté ave	c restriction		

Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

Pour un contrôle précis de la pression du lubrifiant, nous préconisons le système de mesure de pression botek. Pour plus d'informations, voir page 41.

Valeurs indicatives Type 113

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre en carbure monobloc

Acier à ressorts HSS aciers traités, acier résistants au fluage, acier moulé / fonte trempée, alliage spéc. Nimonic, Inconel, titane, alliages au titane	Fonte de fer, GG (< 300 N/mm²), GGG (< 400 N/mm²), fonte malléable GTW, GTS «facilement usinable»	Fonte de fer, GG (> 300 N/mm²), GGG (> 400 N/mm²), acier moulé commun	Cuivre, bronze, laiton, matières plastiques	Aluminium + fonte d'aluminium, teneur en Si > 5% «facilement usinable»	Aluminium + alliage d'aluminium, teneur en Si < 5%
25 - 50	80 - 90	60 - 70	90 - 130	120 - 180	100 - 300
		Avance (mm)/Rotation		
de - à	de - à	de - à	de - à	de - à	de - à
0,0001 - 0,0005	0,0005 - 0,0007	0,0004 - 0,0006	0,0001 - 0,0006	0,0003 - 0,0008	0,0002 - 0,0008
0,0002 - 0,0007	0,0006 - 0,0010	0,0005 - 0,0009	0,0003 - 0,0008	0,0004 - 0,0010	0,0002 - 0,0010
0,0004 - 0,0010	0,0007 - 0,0013	0,0007 - 0,0011	0,0004 - 0,0010	0,0006 - 0,0011	0,0003 - 0,0012
0,0004 - 0,0014	0,0010 - 0,0017	0,0009 - 0,0014	0,0007 - 0,0013	0,0007 - 0,0014	0,0003 - 0,0013
0,0006 - 0,0018	0,0014 - 0,0022	0,0013 - 0,0018	0,0010 - 0,0017	0,0010 - 0,0023	0,0004 - 0,0015
0,0007 - 0,0022	0,0018 - 0,0028	0,0018 - 0,0023	0,0015 - 0,0022	0,0013 - 0,0029	0,0005 - 0,0019
0,0009 - 0,0026	0,0023 - 0,0037	0,0024 - 0,0029	0,0020 - 0,0027	0,0017 - 0,0043	0,0007 - 0,0021
0,0012 - 0,0030	0,0031 - 0,0049	0,0031 - 0,0040	0,0024 - 0,0037	0,0022 - 0,0077	0,0009 - 0,0027
0,0016 - 0,0037	0,0039 - 0,0070	0,0047 - 0,0058	0,0030 - 0,0052	0,0027 - 0,0114	0,0011 - 0,0033
0,0020 - 0,0045	0,0048 - 0,0093	0,0064 - 0,0076	0,0035 - 0,0083	0,0037 - 0,0194	0,0013 - 0,0041
0,0025 - 0,0054	0,0058 - 0,0124	0,0070 - 0,0100	0,0041 - 0,0120	0,0050 - 0,0352	0,0016 - 0,0049
0,0030 - 0,0060	0,0080 - 0,0160	0,0100 - 0,0140	0,0050 - 0,0170	0,0080 - 0,0660	0,0020 - 0,0060
0,0050 - 0,0090	0,0100 - 0,0230	0,0130 - 0,0220	0,0070 - 0,0290	0,0110 - 0,0960	0,0030 - 0,0090
0,0080 - 0,0110	0,0150 - 0,0300	0,0150 - 0,0310	0,0090 - 0,0460	0,0180 - 0,1270	0,0050 - 0,0150
0,0110 - 0,0170	0,0200 - 0,0440	0,0200 - 0,0430	0,0110 - 0,0680	0,0250 - 0,1790	0,0080 - 0,0270
0,0140 - 0,0210	0,0250 - 0,0600	0,0250 - 0,0570	0,0140 - 0,0890	0,0340 - 0,2340	0,0110 - 0,0400
0,0190 - 0,0260	0,0360 - 0,0750	0,0300 - 0,0710	0,0190 - 0,1110	0,0500 - 0,2930	0,0180 - 0,0550
0,0250 - 0,0360	0,0480 - 0,1030	0,0400 - 0,0960	0,0240 - 0,1500	0,0690 - 0,4050	0,0250 - 0,0780
0,0300 - 0,0460	0,0600 - 0,1320	0,0600 - 0,1220	0,0290 - 0,1900	0,0900 - 0,5130	0,0340 - 0,1050
		très bien	adapté		

non adapté

adapté avec restriction

adapté avec restriction

Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

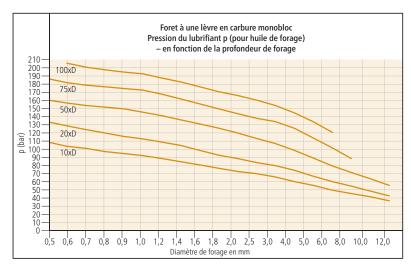
La viscosité prescrite de l'huile de forage pour des diamètres de 0,5 à 1,5 mm est de l'ordre de 8 à 10 mm²/s env. et pour des diamètres > 1,5 mm de l'ordre de 10 à 15 mm²/s à 40°C.

Lorsqu'une émulsion est utilisée, les pressions indiquées (p) peuvent être réduites de 10 à 20 %.

Pour les diamètres d'outil < 2,0 mm, une filtration de 5 à 10 μ m est nécessaire. Pour les diamètres d'outil \geq 2,0 mm, une filtration de 5 à 20 μ m est nécessaire.

Valeurs indicatives pour les débits minimaux de la pompe à lubrifiant à utiliser à la pression indiquée p (en bar) la pompe à lubrifiant de refroidissement doit être à débit ajustable.

Diamètre de forage: $\emptyset \le 2,0 \to 4 \text{ l/min mini.}$ Diamètre de forage: $\emptyset 2,0 - 12,0 \to 24 \text{ l/min mini.}$


Pour garantir une évacuation fiable des copeaux, la pression du lubrifiant de refroidissement doit être ajustée via le débit de la pompe. Pour non recommandations concernant la pression du lubrifiant de refroidissement par rapport au diamètre et à la profondeur de forage, se reporter au diagramme.

Valeurs indicatives Type 113-HP

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre en carbure monobloc Type 113-HP en exécution HP

Groupes de matériaux	Acier de construction, Acier de coupe libre (< 750 N/mm²)	Aciers alliés, les aciers de cémentation (> 900 N/mm²)	Aciers trempés, les aciers à outils, les aciers nitrurés, (< 1200 N/mm²)	Antirouille acier + acier moulé, Ni < 8 % « facile à travailler »			
Vitesse de coupe m/min	80	70	65	50			
Foret-Ø		Avance (mn	n)/Rotation				
(mm)	à 25xD = 100%, à 3	35xD = 90%, à 45xD = 80%, à 55xI	D = 70%, à 65xD = 60%, à 75xD =	D = 60%, à $75xD = 50%$, à $80xD = 45%$, $> 80xD = 40%$			
< 1,40	à 0,050	à 0,045	à 0,040	à 0,025			
1,41 - 1,60	0,060	0,057	0,054	0,030			
1,61 - 1,80	0,070	0,066	0,063	0,035			
1,81 - 2,00	0,080	0,076	0,072	0,040			
2,01 - 2,25	0,090	0,085	0,081	0,045			
2,26 - 2,50	0,100	0,095	0,090	0,050			
2,51 - 2,75	0,110	0,105	0,099	0,055			
2,76 - 3,00	0,120	0,115	0,108	0,060			
3,01 - 3,50	0,135	0,127	0,120	0,067			
3,51 - 4,00	0,145	0,138	0,131	0,073			
4,01 - 4,50	0,160	0,152	0,144	0,080			
4,51 - 5,00	0,174	0,165	0,156	0,087			
5,01 - 5,50	0,185	0,176	0,167	0,093			
5,51 - 6,00	0,200	0,190	0,180	0,100			
6,01 - 6,50	0,210	0,199	0,189	0,105			
6,51 - 7,00	0,220	0,209	0,198	0,110			
7,01 - 7,50	0,230	0,218	0,200	0,115			
7,51 - 8,00	0,240	0,228	0,205	0,120			
8,01 - 8,50	0,250	0,237	0,210	0,125			
8,51 - 9,00	0,260	0,247	0,220	0,130			
9,01 - 12,00	0,260	0,247	0,220	0,130			
Huile de forage		très bier	n adapté				
Émulsion				adapté avec restriction			
Micro Lub							

Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

Pour un contrôle précis de la pression du lubrifiant, nous recommandons le système de mesure de pression botek. Informations à ce sujet à la page 41.

Valeurs indicatives Type 113-HP

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre en carbure monobloc Type 113-HP en exécution HP

Antirouille acier résistant aux acides austénitique Ni > 8 %	Aciers à ressort HSS, les aciers trempés, les aciers résistants à la chaleur, fonte dure, Jambe spéciale. Nimonique, Inconel, titane	Fonte, acier moulé général	Cuivre, bronze, laiton, matières plastiques	Aluminium, Aluminium- alliage
40	40	90	120	150
		Avance (mm) / Rotation		
à 25xD	= 100%, à $35xD = 90%$, à $45xD = 80%$	80%, à $55xD = 70%$, à $65xD = 60%$	à $75xD = 50\%$, à $80xD = 45\%$, > 8	0xD = 40%
à 0,0100	à 0,0100	à 0,050	à 0,060	à 0,060
0,0150	0,0150	0,060	0,075	0,075
0,0175	0,0175	0,070	0,087	0,087
0,0200	0,0200	0,080	0,100	0,100
0,0225	0,0225	0,090	0,112	0,112
0,0250	0,0250	0,100	0,125	0,125
0,0275	0,0275	0,110	0,137	0,137
0,0300	0,0300	0,120	0,150	0,150
0,0335	0,0335	0,135	0,167	0,167
0,0365	0,0365	0,145	0,182	0,182
0,0400	0,0400	0,160	0,200	0,200
0,0435	0,0435	0,174	0,217	0,217
0,0465	0,0465	0,185	0,230	0,230
0,0500	0,0500	0,200	0,250	0,250
0,0525	0,0525	0,210	0,265	0,265
0,0550	0,0550	0,220	0,275	0,275
0,0575	0,0575	0,230	0,287	0,287
0,0600	0,0600	0,240	0,300	0,300
0,0625	0,0625	0,250	0,312	0,312
0,0650	0,0650	0,260	0,320	0,320
0,0650	0,0650	0,260	0,320	0,320
		très bie	en adapté	
non adapté				

non adapte

adapté avec restriction

Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

La viscosité prescrite de l'huile de forage pour des diamètres de 0,5 à 1,5 mm est de l'ordre de 8 à 10 mm²/s env. et pour des diamètres > 1,5 mm de l'ordre de 10 à 15 mm²/s à 40°C.

Lorsqu'une émulsion est utilisée, les pressions indiquées (p) peuvent être réduites de 10 à 20 %.

Pour les diamètres d'outil < 2,0 mm, une filtration de 5 à 10 μ m est nécessaire. Pour les diamètres d'outil $\geq 2,0$ mm, une filtration de 5 à 20 μ m est nécessaire.

Valeurs indicatives pour les débits minimaux de la pompe à lubrifiant à utiliser à la pression indiquée p (en bar) - la pompe à lubrifiant de refroidissement doit être à débit ajustable.

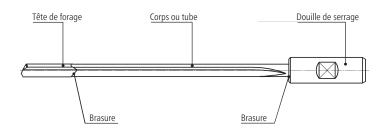
Diamètre de forage: $\emptyset \le 2,0 \to 4 \text{ l/min mini.}$ Diamètre de forage: $\emptyset 2,0 - 12,0 \to 24 \text{ l/min mini.}$

Pour garantir une évacuation fiable des copeaux, la pression du lubrifiant de refroidissement doit être ajustée via le débit de la pompe. Pour non recommandations concernant la pression du lubrifiant de refroidissement par rapport au diamètre et à la profondeur de forage, se reporter au diagramme.

Forets à une lèvre avec tête brasée

Type 110 / Type 112 / Type 114 / Type 115

Présentation des types

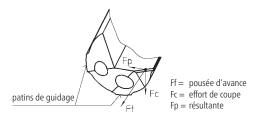

Types	Ø outil	
Type 110	Canalisation de forme oblongue pour outil Ø 1,850 - 7,059 mm	
Foret à une lèvre pour forage dans le plein avec tête en carbure	2 trous d'alimentation pour liquide de coupe pour outil Ø 7,060 - 51,200 mm	
Type 112 Foret à une lèvre étagé pour forage dans le plein avec tête en carbure	Canalisation de forme oblongue ou 2 trous d'alimentation pour liquide de coupe en fonction de l'étage pour outil Ø 2,000 - 51,200 mm	
Type 114 Outil à carotter avec tête en acier (plaquettes et guides carbure brasés)	Ø ext. outil 11,000 - 50,000 mm	
Type 115 Einlippen-Aufbohrwerkzeug mit Bohrkopf aus Vollhartmetall	Canalisation de forme oblongue ou 2 trous d'alimentation pour liquide de coupe	
Type 115-01 Foret à une lèvre alésoir avec tête en carbure	pour outil Ø 1,850 - 51,200 mm	
Type 115-03 Foret à une lèvre alésoir avec douille de fixation et tête en carbure	pour outil Ø 1,850 - 51,200 mm	
Type 115-04 Foret à une lèvre alésoir avec douille de fixation en acier (plaquettes et guides carbure brasés)	pour outil Ø 12,001 - 60,006 mm	
A souhait livrable avec coupe PCD		

A souhait, livrable avec coupe PCD.

Vous trouverez des informations sur le programme de stock/la fabrication express aux pages 48 - 49.

Conception des outils

Les forets à une lèvre botek avec tête brasée se composent d'une tête de forage (en carbure ou en acier avec inserts en carbure) d'un tube en acier traité ainsi que d'une douille de serrage en acier. La tête et la douille sont reliées avec le tube par brasage.



Tête de forage

a) Géométrie périphérique

Le foret à une lèvre avec tête brasée est muni à la périphérie de patins de guidage. L'effort de coupe (voir schéma ci-dessous) presse les patins de guidage contre la paroi pendant le perçage de façon à obtenir une surface parfaitement lisse et une qualité caractéristique pour ce type de forage.

Différentes périphéries (voir vue d'ensemble pages 16 + 17) sont disponibles pour les forets à une lèvre – en fonction du type – afin de répondre à vos besoins.

b) Affûtage

Tout modification de la géométrie de coupe influence sur la tolérance du forage, la forme des copeaux, la rectitude du forage, la qualité de l'état de surface et la durée de vie de l'outil.

Les affûtages standard botek sont le fruit d'années d'expérience et de perfectionnement. Preque tous les problèmes de forage peuvent être résolus grâce à ces affûtages. Pour le forage de matériaux à copeaux longs ou difficiles à usiner, il faut généralement faire appel à des affûtages spéciaux, parfois combinés à un brise-copeaux. Nous avons déjà réalisé une multitude de variantes d'affûtage. En cas de besoin, nous mettons au point de nouveaux affûtage ou réalisons des affûtages spéciaux selon les spécifications du client.

Affûtages sta	ndard pour types 110
SA-0001 pour plage de forage 1,850 - 4,000 mm	\$\frac{1}{2}\frac{1}{2
SA-0002 pour plage de forage 4,001 - 20,000 mm	03.05 03.05 03.05
SA-0003 pour plage de forage 20,001 mm	\$\frac{1}{2}\frac{1}{2
Nous your fournissons volonti	ers des notices explicatives sur l'affûtage.

Forets à une lèvre avec tête brasée

Type 110 / Type 112 / Type 01

Outils de forage dans le plein

Exécution de la tête	Carbure r	monobloc	Tube en acier avec plaquettes et guides en carbure interchangeables		
Méthode		in			
d'usinage Type d'outil	Type 110	Type 112 (foret étagé)	Type 01-000 Type 01-010		
Profil					
Plage de forage de - à (mm)	1,850 -	51,200	9,900 - 43,990		
Longueur d'outil		selon le diamètre, toutefois 5000 mi	m maxi.		
Forme de la canalisation (standard)	forme oblongue 2 trous Ø outil 1,850 - 7,059 7,060 - 51,200		Ø outil Ø outil		1 trou Ø outil 9,900 - 43,990
Particularités	 possibilité de configurer les g géométries périphériques), de fa foret au type d'usinage souhaité réaffûtable débit optimal grâce à différents canalisation disponible avec coupe PCD 	 rendement élevé notamment pour les grandes séries possibilité de choisir entre plusieurs qualités de carbure 			
Géométries périphériques botek optimise la géométrie périphérique en fonction du type d'usinage à réaliser! Attention: pour les formes EA, G et	- tous materiaux - adapté à presque tous les types de forage - faible tolérance de forage faible déviation de perçage - aluminium - faible tolérance de forage - fonte et - en font tolérance	graphite - acier, fonte,	pour les plaquettes et guides afin de répondre précisément aux besoins d'usinage - changement extrêmement facile à réaliser des plaquettes et des guides - avec guides rallongés (Type 01-010) spécialement adaptés au forage croisé		
E, il n'est plus possible de mesurer précisément le diamètre d'outil après la fabrication!	- fonte et alu - forage croisé - mauvaises conditions de forage - idéal pou	voir brochure botek Outils de forage			
Géométrie périphérique spéciale	Egalement exécutable ave	ec géométrie périphérique	Type 01/02/07/07A		
Affûtages spéciaux	Tous les outils peuvent être fo	urnis avec un affûtage spécial			
Revêtement	'	revêtement souhaité			
Diamant / PCD	Sur demande, livra	ble avec coupe PCD			

16

Outils de réalésage et de carottage

Exécution de la tête	Carbure monobloc			Tube en acier avec avec plaquettes et guides en carbure brasés			
Méthode d'usinage	Outils d	'alésage	Outi	ls d'alésage avec pilote		Outils de carottage	
Type d'outil	Type 115	Type 115-01	Type 115-03	Type 1	15-04	Type 114	
Profil							
Plage de forage de - à (mm)	1,850 -	51,200	1,850 - 51,200	12,001 -	60,006	11,000 - 50,000	
Forme de la canalisation	forme oblongue		2 trous	1 trou	2 trous	Canalisation déterminée par la forme de la tête de carottage	
	Ø o 1,850 -		Ø outil 7,060 - 51,200	Ø outil 5,800 - 40,009	Ø outil 40,010 - 60,009		
Particularités	1,050	- avec tube	e cylindrique (évacuat	tion des copeaux dans	s le sens du forage)	age)	
Géométries périphériques botek optimise la géométrie périphérique en fonction du type d'usinage à réaliser! Attention: pour les formes EA, G et E, il n'est plus possible de mesurer précisément le diamètre d'outil après la fabrication!	- tous materiaux - adapté à presque tous les types de forage - faible tolérance de forage faible déviation de perçage - aluminium - faible tolérance de forage - fonte et alu - forage croisé - mauvaises conditions de forage	- fonte et graphite - en fonte, faible tolérance de forage - acier - faible tolérance de forage bonne qualité de revêtement idéal pour forages courts	- acier inox, bois - matériaux difficiles à usiner - de préférence avec émulsion lubrifiante EM - acier, fonte, - matériaux tendres	tion des copeaux dans le sens du forage) cacuation des copeaux dans le sens du fora Guides et plaquettes obligatoirement disposés à la périphérie		Disposition des guides	
Géométrie périphé- rique spéciale	Egalement exé	cutable avec géon	nétrie périphérique	-		-	
Affûtages spéciaux			ec un affûtage spécial	-		-	
Revêtement		ndiquer le revêten		-		-	
Diamant / PCD	Sur dem	ande, livrable ave	c coupe PCD	-		-	

Tube du foret

Un tube en profilé traité à goujoure en V (collet) est utilisé pour former le corps du foret. Seuls les outils de réalésage avec évacuation des copeaux dans le sens de l'avance peuvent être dotés d'un tube cylindrique. L'épaisseur de la paroi par rapport au diamètre extérieur du tube est déterminée pour la résistance à l'effet de torsion et le passage d'huile durant le forage. Elle est le gage de résultats d'usinage et de durées de vie exceptionelles. Pour les forets de grandes longueurs guidés par lunette, la longueur de la goujure en V (collet) doit être dimensionée au plus juste pour permettre l'évacuation des copeaux. Au niveau des lunettes, le tube du foret peut avoir une forme cylindrique de façon à améliorer la stabilité de l'outil .

Pour les outils de dimensions standards, la goujure en V doit être exécutée jusqu'à la douille de serrage.

Douilles de serrage

Type 110 / Type 112 / Type 114 / Type 115

Douilles de serrage

Les forets à une lèvre sont généralement fabriqués avec des douilles de serrage, c.-à-d. brasés avec le tube. Les douilles de serrage transmettent le couple de rotation de la machine au foret. En plus d'une large gamme de dimensions normées, nous proposons également des fabrications selon les modèles ou plans fournis par la clientèle.

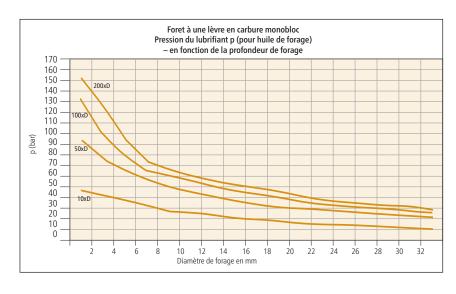
Douilles de serrage pour forets à une lèvre avec tête brasée – Présentation

Dési	ignation			pour long	queur d'	outil		
DCON Douille (mm)		Profil	botek Référence	pour Ø foret (mm) de - à	LSC	LS avec languette de brasage ou tenon	X = Longueur de méplat	TD = Filet
10		X	ZH10-00	1,850 - 7,299	40		24,0	
16		LSC 8	ZH16-03	1,850 - 12,399	45	53	31,0	
25		LSC LS	ZH25-00	6,000 - 19,509	70	78	34,0	
10	avec	X	ZH10-01	7,300 - 12,399	40	57	24,0	
16	tenon	rsc 8	ZH16-04	12,400 - 20,509	45	72	31,0	
25	avec tenon et clavette	LSC	ZH25-01	19,510 - >	70	105	34,0	
16		LSC SO	ZH16-02	1,850 - 12,399	50	58	47,5	
16	avec tenon	LSC NO	ZH16-33	12,400 - 20,509	50	77	47,5	
10	61	V////////	ZH10-06	1,850 - 7,299	60			M6x0,5
16	Hexa. filet métr.	P OCON	ZH16-15	1,850 - 12,399	80			M10x1
25		LS	ZH25-08	6,000 - 19,509	100			M16x1,5
10	Hexa. filet		ZH10-28	7,300 - 12,399	60	77		M6x0,5
16	métr. avec	LSC	ZH16-22	12,400 - 20,509	80	105		M10x1
25	tenon	LS	ZH25-10	19,509 - >	100	140		M16x1,5
12,7			ZH12,7-00	1,850 - 9,699	38,1		25,3	
19,05	D	X	ZH19,05-01	3,960 - 14,899	70		45,0	
25,4	Pouce (inch)	DCON	ZH25,4-00	6,000 - 19,509	70		57,5	
31,7	, ,	LS LS	ZH31,7-00	9,700 - 25,609	70		57,5	
38,1			ZH38,1-00	9,700 - 32,609	70		57,5	
19,05		X	ZH19,05-11	14,900 - 24,609	70	97	45,0	
25,4	Pouce (inch)	NO DC ON	ZH25,4-01	19,510 - >	70	100	57,5	
31,7	avec tenon	LSC LS	ZH31,7-01	25,610 - >	70	110	57,5	
38,1		. X	ZH38,1-01	32,610 - >	70	110	57,5	
10	-	NOON	ZH10-44	1,850 - 6,749	60	68	35	M6x0,5
16	VDI 3208	LSC	ZH16-31	1,850 - 10,799	80	90	37	M10x1
25		LS	ZH25-34	6,000 - 19,509	100	112	45	M16x1,5
16	VDI 3208	X Non-man of No	ZH16-66	10,800 - 16,399	80	110	37	M10x1
25	avec tenon	LSC	ZH25-40	19,510 - 42,699	100	142	45	M16x1,5

Douilles de serrage

Type 110 / Type 112 / Type 114 / Type 115

Douilles de serrage pour forets à une lèvre avec tête brasée – Présentation


Dé	signation			pour longu	pour longueur d'outil			
DCON	_	Profil	botek Référence	pour Ø foret		LS avec languette	X = Longueur	TD = Filet
Douille (mm)	Туре		Reference	(mm) de - à	LSC	de brasage ou tenon	de méplat	riiet
16	Douille de	- X	SH16-00	1,850 - 12,899	112		73,0	TR16x1,5
20	réglage avec		SH20-00	1,850 - 14,899	126		82,0	TR20x2
28 36	filet trapézoïdal	LS	SH28-00 SH36-00	6,000 - 21,509 8,700 - 28,609	126 162		82,0 109,0	TR28x2 TR36x2
16		X -1	ZH16-21	1,850 - 12,399	40		28,0	TNOONZ
25	Speed-Bit	DCON	ZH25-16	6,750 - 19,509	50		35,0	
35		LS	ZH35-00	9,700 - 28,609	60		40,0	
16	Speed-Bit	X	ZH16-30	12,400 - 20,509	40	67	28,0	
25	avec tenon	LSC 8	ZH25-20	19,510 - 30,609	50	77	35,0	
35 10		LS	ZH35-01 ZH10-40	28,610 - > 1,850 - 7,299	60 40	100	40,0	
12	-		ZH10-40 ZH12-18	1,850 - 7,299	45			
16	DIN 6535-HA	Z	ZH16-11	1,850 - 12,399	48			
20	- DIN 0333-11A	DCON	ZH20-01	5,000 - 15,899	50			
25 32	-	LS	ZH25-11 ZH32-24	6,000 - 19,509 9,700 - 25,600	56 60			
40	DIN 1835-A40		ZH40-03	9,700 - 32,609	70			
10			ZH10-41	7,300 - 12,399	40	57		
12		-	ZH12-19	9,000 - 15,899	45	62		
16	DIN 6535-HA	DOO	ZH16-20	12,400 - 20,509	48 50	75		
20 25	resp. 1835-A avec tenon	LSC	ZH20-60 ZH25-21	15,900 - 25,603 19,510 - 42,699	56	77 86		
32	. avecterion	LS	ZH32-23	25,610 - 45,699	60	100		
40			ZH40-04	32,610 - >	70	110		
10		× X	ZH10-11	1,850 - 7,299	40		23,5	
12 16	DIN 6535-HB	No.	ZH12-07 ZH16-32	1,850 - 8,999 1,850 - 12,399	45 48		26,5	
20	-	LS	ZH10-32 ZH20-29	1,850 - 12,399	50		29,0 30,5	
25	DIN 6535-HB	, x ,	ZH25-22	6,000 - 19,509	56		38,0	
32	DIN 1835-B32	NODO	ZH32-10	9,700 - 25,609	60		43,0	
40	DIN 1835-B40	LS LS	ZH40-13	9,700 - 32,609	70		47,0	
50 10	DIN 1835-B50		ZH50-05 ZH10-23	15,900 - 42,699 7,300 - 12,399	80 40	57	54,0 23,5	
12	-		ZH12-02	9,000 - 15,899	45	62	26,5	
16	DIN 6535-HB	- X	ZH16-53	12,400 - 20,509	48	75	29,0	
20 25	resp. 1835-B	DOO	ZH20-34 ZH25-31	15,900 - 25,609 19,510 - >	50 56	77 86	30,5 38,0	
32	avec tenon	LSC	ZH25-31 ZH32-11	19,510 - > 25,610 - >	60	100	43,0	
40		LS	ZH40-14	32,610 - >	70	110	47,0	
50			ZH50-06	42,700 - >	80	120	54,0	
10	-		ZH10-20 ZH12-08	1,850 - 7,299 1,850 - 8,999	40 45		28,0 33,0	
16	-	× ×	ZH16-47	1,850 - 12,399	48		36,0	
20	DIN 1835-E	DCON	ZH20-40	1,850 - 15,899	50		38,0	
25 32	-	LS	ZH25-36 ZH32-12	6,000 - 19,509 9,700 - 25,609	56 60		44,0 48,0	
40	_	-	ZH40-18	9,700 - 23,609	70		66,0	
10			ZH10-24	7,300 - 12,399	40	57	28,0	
12	-	<u> </u>	ZH12-05	9,000 - 15,899	45	62	33,0	
16 20	DIN 1835-E	NOCON	ZH16-51 ZH20-43	12,400 - 20,509 15,900 - 29,609	48 50	75 77	36,0 38,0	
25	avec tenon	LSC	ZH25-37	19,510 - >	56	86	44,0	
32		LS	ZH32-13	25,610 - >	60	100	48,0	
40 10			ZH40-17 ZH10-29	32,610 - > 1,850 - 7,299	70 40	110	66,0 28,0	
12	DIN 6535	X	ZH10-29 ZH12-13	1,850 - 7,299	45		33,0	
16	DIN 6535-HE	LS	ZH16-62	1,850 - 12,399	48		36,0	
20			ZH20-55	1,850 - 15,899	50		38,0	
10	DIN 6535-HE	X	ZH10-30 ZH12-14	7,300 - 12,399 9,000 - 15,899	40 45	57 62	28,0	
16	avec tenon	LSC	ZH12-14 ZH16-70	12,400 - 15,899	45	75	33,0 36,0	
20	1	LSC	ZH20-56	15,900 - 29,609	50	77	38,0	

Valeurs indicatives Type 110

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre à tête brasée

Groupes de matériaux	Acier de construction non allié et acier de décolletage faiblement allié, acier traité, acier de cémentation, acier à outils, (< 900 N/mm²) «facilement usinable»	Aciers traités alliés, aciers de cémentation, aciers nitrurés, aciers à outils (> 900 N / mm²)	Acier inoxydable+ fonte d'acier, martensitique / ferritique 13-25% Cr (sulfuré) «facilement usinable»	Acier inoxydable+ fonte d'acier résistant aux acides, austénitique Ni > 8%, 18-25% Cr
Vitesse de coupe m/min	70 - 100	60 - 80	40 - 80	30 - 60
Foret-Ø		Avance (mn	n)/Rotation	
(mm)	de - à	de - à	de - à	de - à
1,85 - 2,49	0,0019 - 0,0060	0,0019 - 0,0078	0,0019 - 0,0039	0,0016 - 0,0029
2,50 - 2,99	0,0025 - 0,0094	0,0033 - 0,0119	0,0038 - 0,0064	0,0025 - 0,0046
3,00 - 3,49	0,0034 - 0,0128	0,0053 - 0,0157	0,0049 - 0,0089	0,0037 - 0,0063
3,50 - 3,99	0,0045 - 0,0165	0,0070 - 0,0196	0,0070 - 0,0122	0,0050 - 0,0081
4,00 - 4,49	0,0056 - 0,0211	0,0089 - 0,0236	0,0080 - 0,0157	0,0070 - 0,0098
4,50 - 4,99	0,0069 - 0,0254	0,0102 - 0,0274	0,0098 - 0,0189	0,0089 - 0,0118
5,00 - 5,99	0,0089 - 0,0295	0,0125 - 0,0316	0,0118 - 0,0222	0,0113 - 0,0136
6,00 - 6,99	0,0110 - 0,0364	0,0150 - 0,0393	0,0143 - 0,0276	0,0140 - 0,0170
7,00 - 7,99	0,0133 - 0,0431	0,0175 - 0,0467	0,0163 - 0,0343	0,0160 - 0,0205
8,00 - 8,99	0,0157 - 0,0495	0,0200 - 0,0550	0,0183 - 0,0405	0,0180 - 0,0243
9,00 - 9,99	0,0184 - 0,0565	0,0225 - 0,0632	0,0212 - 0,0466	0,0200 - 0,0283
10,00 - 11,99	0,0230 - 0,0630	0,0250 - 0,0710	0,0260 - 0,0530	0,0250 - 0,0320
12,00 - 13,99	0,0270 - 0,0760	0,0310 - 0,0860	0,0320 - 0,0650	0,0300 - 0,0410
14,00 - 15,99	0,0320 - 0,0900	0,0350 - 0,1020	0,0380 - 0,0770	0,0350 - 0,0500
16,00 - 17,99	0,0360 - 0,1030	0,0390 - 0,1190	0,0450 - 0,0900	0,0410 - 0,0590
18,00 - 19,99	0,0410 - 0,1160	0,0440 - 0,1350	0,0530 - 0,1050	0,0480 - 0,0710
20,00 - 23,99	0,0510 - 0,1300	0,0490 - 0,1530	0,0680 - 0,1190	0,0600 - 0,0830
24,00 - 27,99	0,0600 - 0,1570	0,0540 - 0,1850	0,0830 - 0,1430	0,0730 - 0,1060
28,00 - 31,99	0,0700 - 0,1840	0,0590 - 0,2170	0,1000 - 0,1680	0,0870 - 0,1270
32,00 - >	0,0850 - 0,2110	0,0630 - 0,2470	0,1250 - 0,1930	0,1070 - 0,1510
Huile de forage		très bier	n adapté	
Émulsion				non adapté
Micro Lub		adapté ave	c restriction	

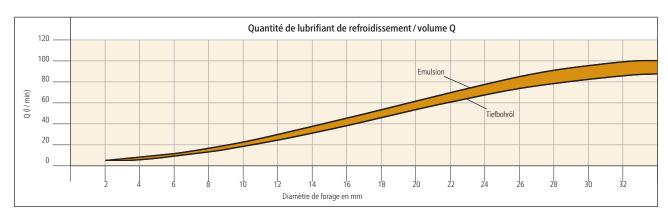
Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

Pour un contrôle précis de la pression du lubrifiant, nous préconisons le système de mesure de pression botek. Pour plus d'informations, voir page 41.

Valeurs indicatives Type 110

Valeurs indicatives pour le forage de différents matériaux à usiner pour forets à une lèvre à tête brasée

Acier à ressorts HSS aciers traités, acier résistants au fluage, acier moulé / fonte trempée, alliage spéc. Nimonic, Inconel, titane, alliages au titane	Fonte de fer, GG (< 300 N/mm²), GGG (< 400 N/mm²), fonte malléable GTW, GTS «facilement usinable»	Fonte de fer, GG (> 300 N/mm²), GGG (> 400 N/mm²), acier moulé commun	Cuivre, bronze, laiton, matières plastiques	Aluminium + fonte d'aluminium, teneur en Si > 5% «facilement usinable»	Aluminium + alliage d'aluminium, teneur en Si < 5%
25 - 60	70 - 100	60 - 90	80 - 150	100 - 180	100 - 300
		Avance (mm)/Rotation		
de - à	de - à	de - à	de - à	de - à	de - à
0,0013 - 0,0015	0,0046 - 0,0116	0,0023 - 0,0063	0,0028 - 0,0074	0,0019 - 0,0182	0,0019 - 0,0031
0,0019 - 0,0022	0,0068 - 0,0178	0,0034 - 0,0129	0,0041 - 0,0126	0,0029 - 0,0368	0,0033 - 0,0053
0,0026 - 0,0028	0,0086 - 0,0236	0,0049 - 0,0188	0,0060 - 0,0176	0,0055 - 0,0589	0,0049 - 0,0088
0,0038 - 0,0040	0,0105 - 0,0300	0,0073 - 0,0242	0,0070 - 0,0234	0,0078 - 0,0859	0,0063 - 0,0154
0,0052 - 0,0056	0,0127 - 0,0362	0,0092 - 0,0311	0,0080 - 0,0293	0,0106 - 0,1178	0,0078 - 0,0214
0,0071 - 0,0077	0,0145 - 0,0424	0,0112 - 0,0377	0,0088 - 0,0377	0,0127 - 0,1466	0,0094 - 0,0273
0,0092 - 0,0100	0,0185 - 0,0495	0,0141 - 0,0440	0,0106 - 0,0450	0,0165 - 0,1717	0,0122 - 0,0324
0,0120 - 0,0126	0,0235 - 0,0603	0,0172 - 0,0563	0,0123 - 0,0565	0,0192 - 0,2167	0,0154 - 0,0414
0,0147 - 0,0165	0,0280 - 0,0728	0,0201 - 0,0676	0,0144 - 0,0674	0,0235 - 0,2624	0,0176 - 0,0498
0,0176 - 0,0209	0,0343 - 0,0859	0,0231 - 0,0795	0,0166 - 0,0804	0,0282 - 0,3140	0,0198 - 0,0578
0,0207 - 0,0240	0,0394 - 0,0983	0,0261 - 0,0917	0,0188 - 0,0942	0,0333 - 0,3550	0,0220 - 0,0659
0,0240 - 0,0270	0,0500 - 0,1100	0,0310 - 0,1030	0,0230 - 0,1040	0,0420 - 0,3960	0,0260 - 0,0750
0,0280 - 0,0330	0,0600 - 0,1330	0,0370 - 0,1260	0,0270 - 0,1250	0,0520 - 0,4780	0,0310 - 0,0930
0,0340 - 0,0400	0,0700 - 0,1560	0,0420 - 0,1460	0,0320 - 0,1460	0,0630 - 0,5600	0,0350 - 0,1110
0,0380 - 0,0460	0,0790 - 0,1780	0,0470 - 0,1650	0,0370 - 0,1660	0,0710 - 0,6310	0,0400 - 0,1310
0,0430 - 0,0530	0,0870 - 0,2010	0,0520 - 0,1820	0,0420 - 0,1870	0,0780 - 0,6920	0,0440 - 0,1510
0,0510 - 0,0600	0,1060 - 0,2240	0,0630 - 0,1990	0,0510 - 0,2070	0,0940 - 0,7540	0,0530 - 0,1670
0,0630 - 0,0730	0,1230 - 0,2700	0,0730 - 0,2340	0,0600 - 0,2460	0,1100 - 0,8710	0,0620 - 0,2010
0,0720 - 0,0860	0,1410 - 0,3160	0,0840 - 0,2690	0,0700 - 0,2810	0,1260 - 0,9890	0,0700 - 0,2340
0,0860 - 0,1000	0,1690 - 0,3620	0,0990 - 0,3010	0,0850 - 0,3150	0,1490 - 1,0990	0,0840 - 0,2680


très bien adapté

non adapté

adapté avec restriction

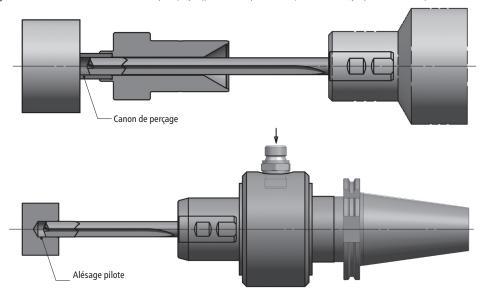
adapté avec restriction

Le réglage de la vitesse de coupe et de l'avance dépendent de la situation d'usinage, de la longueur de l'outil, du lubrifiant de refroidissement du matériau de la pièce et de stabilité des pièces de la machine et du serrage de l'outil. Toutes les valeurs sont données à titre indicatif.

Une évacuation fiable des copeaux n'est garantie qu'à condition d'amener un volume suffisant de lubrifiant de refroidissement au niveau de l'outil. Pour nos recommandations concernant la pression du librifiant de refroidissement par rapport au diamétre et à la profondeur de forage, se reporter au diagramme.

Les avantages en un coup d'œil

Type 123/Type 123-01/Type 123-02/Type 120/Type 122/Type 125/Type 125-03


- 1. Perçage économique des trous profonds et précis.
- 2. Vitesse d'avance élevée grâce à la conception à deux goujures.
- 3. Bonne qualité de perçage.
- 4. Haute sécurité du processus.
- 5. Des longueurs d'outils jusqu'à 1200 mm sont possibles, en fonction du type et du Ø de l'outil.
- 6. Convient pour les centres d'usinage et les machines de perçage profond avec système de lubrification à haute pression.
- 7. Lubrification par quantité minimale (MQL) également possible dans certaines conditions.
- 8. Les outils peuvent être utilisés horizontalement et verticalement, avec un outil rotatif, ou avec une pièce rotative et sa combinaison.
- 9. Les outils peuvent être réaffûtés chez botek ou chez vous.
- 10. Particulièrement adapté aux matériaux à copeaux courts tels que les alliages AL et les pièces moulées.
- 11. Affûtage avec brise-copeaux et diviseur de copeaux pour un brise-copeaux optimal.
- 12. Grâce à l'accessoire «Axial Pulsator» de botek, les outils peuvent désormais également être utilisés dans l'acier et les matériaux à copeaux longs.
- 13. L'accessoire «Axial Pulsator» de botek permet d'atteindre des vitesses d'avance encore plus élevées.

Conditions d'application des forets à deux lèvres de coupe

L'une des caractéristiques du perçage profond à deux lèvres est que le lubrifiant de refroidissement est acheminé à travers les canaux de refroidissement de l'outil et est guidé hors de l'alésage avec les copeaux dans les goujures en forme de V (billes) de la tige du foret.

Les conditions préalables à la réussite d'un forage profond sont les suivantes:

- 1. Un lubrifiant de refroidissement et un système de filtration efficace avec une filtration de 20 μm à 30 μm (plus le diamètre de l'alésage est petit, plus le lubrifiant de refroidissement et le système de filtration doivent être efficaces)
- 2. Lubrifiant réfrigérant approprié, c'est-à-dire huile de forage profond ou émulsion (min. 10-12 % de concentration avec additifs) doit être disponible en quantité et pression suffisantes. Lubrification par quantité minimale (MQL) également possible dans certaines conditions.
- 3. Guidage du foret à travers le canon de perçage (perceuse profonde) ou l'alésage pilote sur la pièce à usiner (centre d'usinage).

Le foret à deux lèvres est un outil de perçage à double tranchant sans auto-centrage. Lors du forage, l'outil doit être guidé à travers un canon de perçage ou un alésage pilote. La qualité du guide de forage infl uence la durée de vie des outils et la course du centre de l'alésage.

Les foret à deux lèvres en carbure monobloc peuvent être utilisés sans pilote jusqu'à une longueur de 12 x D, mais avec des conditions réduits en attaquant la pièce (voir page 27).

Valeurs indicatives pour le perçage sur avant-trou

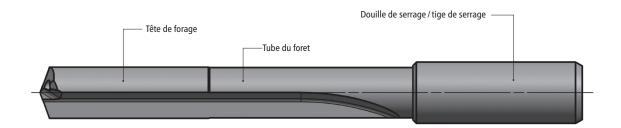
	Zone de perçage (mm)	Dimensions pour le perçage	sur avant-trou (alésage pilote)
	zone de perçage (mm)	L (mm)	D (mm) Tolérance ISO F7
F	2,800 - 6,000 mm	c2 15 v D	+ 0,010 bis 0,022
000	6,001 - 10,000 mm	ca. 1,5 x D	+ 0,013 bis 0,028
0 9	10,001 - 18,000 mm	ca 10 v D	+ 0,016 bis 0,034
L	18,001 - 43,009 mm	ca. 1,0 x D	+ 0,020 bis 0,041

Pour les perçages de précision, nous recommandons d'utiliser la tolérance ISO G6. Les dimensions indiquées dans le tableau sont des valeurs indicatives. La zone de tolérance ISO IT8 n'est possible que sous certaines conditions. Pour éviter les éclats sur l'arête de coupe, il est conseillé selon le cas d'usinage, d'utiliser un chanfrein en entrée « F » est recommandé.

- → Veuillez consulter à ce sujet nos conseils d'utilisation aux pages 34 + 35.
- → Programme de stock des forets pilotes page 51.

Forets à deux lèvres en carbure monobloc (à goujures droites)

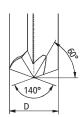
Type 123


Présentation des types

Types	Ø outil	
Type 123 Outil de perçage foret à deux lèvres / Perceuse haute performance à quatre biseaux en carbure monobloc	Ø outil 2,800 - 32,000 mm	
Type 123-01 Outil de perçage foret à deux lèvres / étage en carbure monobloc Étage 90°	Ø outil 2,000 - 32,000 mm	
Type 123-02 Outil de perçage foret à deux lèvres / étage en carbure monobloc Étage 180°	Ø outil 2,000 - 32,000 mm	

Type 123 disponible avec un insert PCD sur demande

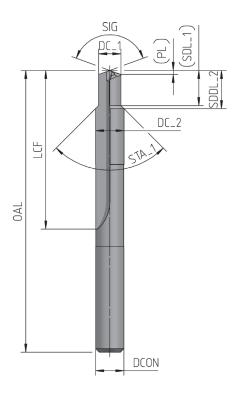
Conception des outils

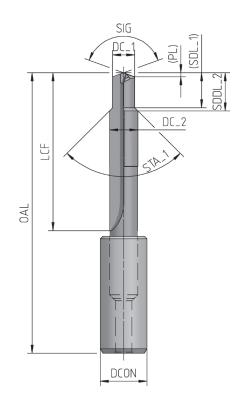

La tête et la tige du foret sont faites d'une ébauche en carbure. Cet outil est particulièrement fiable et puissant. Une durée de vie plus longue est obtenue grâce à de faibles vibrations de torsion.

Affûtage standard

Les modifications de la géométrie des arêtes de coupe influencent le fond de l'alésage, la tolérance de l'alésage, la forme des copeaux, la pression et la quantité de liquide de refroidissement dans l'alésage ainsi que la qualité de surface de l'alésage, l'axe de l'alésage et la durée de vie de l'outil. Aufil des années, botek a testé avec succès une variété de joints rectifiés pour le perçage de différents matériaux.

L'expérience acquise dans ce processus constitue la base du développement de l'affûtage standard. Grâce à cette rectification, presque toutes les tâches de perçage peuvent être résolues avec succès. Pour le perçage de trous profonds de copeaux particulièrement longs et de matériaux difficiles à couper, des brises copeaux sont généralement nécessaires, en partie avec diviseur de copeaux/brise-copeaux, que nous fabriquons sur demande.




→ Instruction d'affûtage voir page 31.

Douilles de serrage

Douilles de serrage (VHM)	DCON
DIN 6535 HAK	6 8 10 12 14 16 18 20 25 32
DIN 6535 HBK	6 8 10 12 14 16 18 20
DCON	25 32
DIN 6535 HEK	6 8 10 12 14 16 18 20 25 32

Douilles de serrage	DCON (mm)	LS douille (mm)
DIN 6535 HAK	10 12 16 20 25	40 45 48 50 56
DIN 6535 HBK	10 12 16 20 25	40 45 48 50 56
LS	32 40	60 70
LS	10 12 16 20 25 32 40	40 45 48 50 56 60 70
Douilles spéciales	selon plan	selon plan

Paramètres de coupe d'après ISO 13399

d'apres ISO 13399

SIG = Angle de pointe

DC = Diamètre de l'outil

PL = Longueur de pointe

LCF = Longueur de goujure

LS = Longueur d'attachement

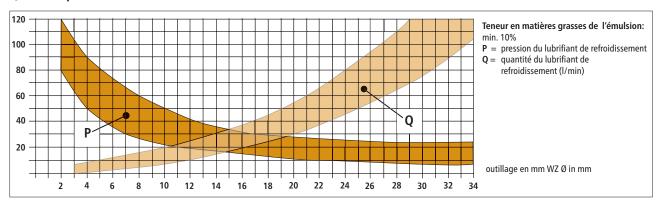
OAL = Longueur totale

DCON = Diamètre d'attachement

Veuillez noter:

- La forme de la queue DIN 6535 HAK est standard.
 Tous les autres types de queue ou de douilles ne sont disponibles que sur demande.
- Toutes les formes de queue avec tolérance de queue optimisée pour le montage dans des mandrins à expansion hydraulique.

Valeurs indicatives Type 123


Valeurs indicatives pour l'utilisation de forets en carbure monobloc à hautes performances avec lubrification

Groupe de matériaux	Résistance/	Exemples	Vitesse de coupe Vc (m/min),		•	c (m/min), v a sans alésag				par révoluti ort au diamè	. ,	
	dureté	·	valeurs de perçage avec alésage pilote	3 x D	5 x D	8 x D	12 x D	3,0-4,99	5,0-7,99	8,0-11,99	12,0-15,99	16,0-20,0
Acier coulé	jusqu'à 600 N/mm² jusqu'à 700 N/mm² plus de 700 N/mm²	GS 52	30 - 60 25 - 50 20 - 45	27,0 - 54,0 22,5 - 45,0 18,0 - 40,5	24 - 48 20 - 40 16 - 36	21,0 - 42,0 17,5 - 35,0 14,0 - 31,5	18 - 36 15 - 30 12 - 27	0,05 - 0,15 0,04 - 0,10 0,04 - 0,10	0,05 - 0,20 0,05 - 0,16 0,05 - 0,16	0,10 - 0,22 0,05 - 0,19 0,05 - 0,19	0,10 - 0,25 0,08 - 0,20 0,08 - 0,20	0,10 - 0,28 0,08 - 0,22 0,08 - 0,22
	jusqu'à 200 HB	GG 30 GGG 50 GTW 40	70 - 115 70 - 115 70 - 115	63,0 -103,5 63,0 -103,5 63,0 -103,5	56 - 92 56 - 92 56 - 92	49,0 - 80,5 49,0 - 80,5 49,0 - 80,5	42 - 69 42 - 69 42 - 69	0,10 - 0,25 0,10 - 0,25 0,10 - 0,25	0,15 - 0,32 0,15 - 0,32 0,15 - 0,32	0,20 - 0,40 0,20 - 0,40 0,20 - 0,40	0,25 - 0,45 0,25 - 0,45 0,25 - 0,45	0,30 - 0,50 0,30 - 0,50 0,30 - 0,50
Fonte/fonte malléable	jusqu'à 250 HB	GG 30 GGG 50 GTW 400	60 - 95 60 - 95 60 - 95	54,0 - 85,5 54,0 - 85,5 54,0 - 85,5	48 - 76 48 - 76 48 - 76	42,0 - 66,5 42,0 - 66,5 42,0 - 66,5	36 - 57 36 - 57 36 - 57	0,10 - 0,20 0,10 - 0,20 0,10 - 0,20	0,12 - 0,25 0,12 - 0,25 0,12 - 0,25	0,15 - 0,35 0,15 - 0,35 0,15 - 0,35	0,20 - 0,40 0,20 - 0,40 0,20 - 0,40	0,25 - 0,45 0,25 - 0,45 0,25 - 0,45
	plus de 250 HB	GG 40 GGG 70 GTS 70	50 - 80 50 - 80 50 - 80	45,0 - 72,0 45,0 - 72,0 45,0 - 72,0	40 - 64 40 - 64 40 - 64	35,0 - 56,0 35,0 - 56,0 35,0 - 56,0	30 - 48 30 - 48 30 - 48	0,10 - 0,20 0,10 - 0,20 0,10 - 0,20	0,12 - 0,25 0,12 - 0,25 0,12 - 0,25	0,15 - 0,35 0,15 - 0,35 0,15 - 0,35	0,20 - 0,40 0,20 - 0,40 0,20 - 0,40	0,25 - 0,45 0,25 - 0,45 0,25 - 0,45
Fonte dure	350 HB 450 HB		20 - 55 20 - 55	18,0 - 49,5 18,0 - 49,5	16 - 44 16 - 44	14,0 - 38,5 14,0 - 38,5	12 - 33 12 - 33	0,04 - 0,10 0,04 - 0,10	0,06 - 0,12 0,06 - 0,12	0,08 - 0,15 0,08 - 0,15	0,08 - 0,15 0,08 - 0,15	0,10 - 0,20 0,10 - 0,20
Métaux lourds non- ferreux		Kupfer Bronze Messing	60 - 220 60 - 220 60 - 220	54,0 -198,0 54,0 -198,0 54,0 -198,0	48 - 176 48 - 176 48 - 176	42,0 -154,0 42,0 -154,0 42,0 -154,0	36 -132 36 -132 36 -132	0,07 - 0,18 0,07 - 0,18 0,07 - 0,18	0,12 - 0,25 0,12 - 0,25 0,12 - 0,25	0,20 - 0,35 0,20 - 0,35 0,20 - 0,35	0,25 - 0,45 0,25 - 0,45 0,25 - 0,45	0,30 - 0,50 0,30 - 0,50 0,30 - 0,50
Fonte d'aluminium		< 10% Si	80 - 300	72,0-270,0	64 - 240	56,0-210,0	48 -180	0,20 - 0,40	0,20 - 0,40	0,20 - 0,40	0,20 - 0,40	0,20 - 0,40
Al		> 10% Si	70 - 200	63,0-180,0	56 - 160	49,0-140,0	42 -120	0,10 - 0,25	0,15 - 0,35	0,25 - 0,45	0,30 - 0,50	0,35 - 0,55

Veuillez noter:

- Les valeurs indicatives contenues dans les tableaux des valeurs de coupe ne s'appliquent qu'en cas d'utilisation de mandrins à expansion hydraulique et d'une bonne évacuation des copeaux.
- Lors de l'utilisation d'outils revêtus, la formation de copeaux peut changer (souvent de longs copeaux).
- Lors du redémarrage, nous recommandons une vitesse de coupe moyenne Vc (m/min), qui peut ensuite être optimisée.
- Les valeurs d'alimentation doivent être sélectionnées de manière à ce que les copeaux soient aussi courts que possible mais non comprimés.
- Plus d'informations sur la viscosité et la filtration voir Page 30.
- En principe, une bonne performance de coupe n'est possible que si les copeaux sont guidés hors de l'alésage en toute sécurité (voir diagramme Pression du lubrifiant de refroidissement).

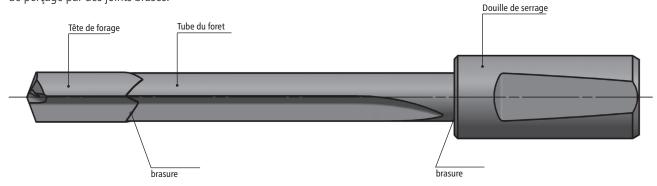
Quantité / pression du lubrifiant de refroidissement

Veuillez noter:

- La précision d'alignement et la qualité de surface ne peuvent être atteintes que si l'outil est serré de manière optimale (mandrin à expansion hydraulique), c'est-à-dire que la concentricité de l'outil ne doit pas dépasser 0,015 mm à l'état serré. Veuillez vérifier régulièrement la concentricité.
- Valeurs d'avance réduites pour les coupes interrompues, par ex. perçages transversaux, pentes d'entrée et de sortie, etc.

Foret à deux lèvres de coupe avec tête de forage soudée

Type 120 / Type 122 / Type 125

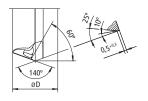

Présentation des types

Types	Ø outil	
Type 120 Outil de perçage foret à deux lèvres avec tête de forage en carbure monobloc	Ø outil 4,500 - 43,009 mm Größere Ø auf Anfrage	
Type 122 Outil de perçage étagé foret à deux lèvres avec tête de forage en carbure monobloc	Ø outil 4,500 - 43,009 mm	
Type 125 Outil d'alésage foret à deux lèvres avec tête de forage en carbure monobloc	Ø outil 4,000 - 40,000 mm	
Type 125-03 Outil d'alésage à deux lèvres avec pilotè de guidage et tête de perçage en carbure monobloc sur tige en acier	Ø outil 5,000 - 40,000 mm	

Type 120 disponible avec une lame PCD sur demande

Conception des outils

Les forets botek à deux lèvres avec une tête de forage brasée se composent d'une tête de perçage en carbure, d'une tige de perçage en acier trempé et d'une douille de serrage en acier. La tête de perçage et la douille de serrage sont reliées à la tige de perçage par des joints brasés.


Affûtage standard

Les modifications de la géométrie des arêtes de coupe du foret à deux lèvres peuvent influencer la base du foret, la forme des copeaux, la tolérance d'alésage, la course du centre de l'alésage, l'enlèvement de copeaux, la qualité de surface et la durée de vie de l'outil.

L'affûtage standard botek est le résultat d'années de tests et de développement. Ainsi, presque toutes les tâches de forage peuvent être résolues avec succès. Pour le perçage profond de copeaux particulièrement longs et de matériaux difficiles à usiner, des affûtages spéciaux sont généralement nécessaires, en partie avec diviseur de copeaux/brise-copeaux.

Nous produisons déjà de nombreuses variantes de rectification. Si nécessaire, de nouvelles meules sont développées ou fabriquées selon les plans individuels du client.

Douilles de serrage

Type 120 / Type 122 / Type 125

Douilles de serrage

Les forets à deux lèvres sont généralement fabriqués avec des douilles de serrage, c'est-à-dire soudés au tube du foret. Les douilles de serrage transmettent le couple de la machine à la perceuse. En plus d'un grand nombre de dimensions normalisées à l'intérieur, nous fabriquons également selon les échantillons ou les dessins du client.

Douilles de serrage pour les forets à deux lèvres de coupe avec tête de forage brasée – aperçu

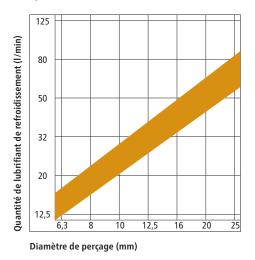
Désignation			pour conception d	e la longu	eur de l'outil	X =		
DCON douille (mm)	Туре	Illustration	N° de plan botek	pour Ø foret (mm) de - à	LSC	LS avec collerette à souder et/ou broche	Position de la zone de serrage	TD = fils
10		X	ZH10-00	1,850 - 7,299	40		24,0	
16		LSC OO	ZH16-03	1,850 - 12,399	45	53	31,0	
25		. LS DE	ZH25-00	6,000 - 19,509	70	78	34,0	
10	avec	×	ZH10-01	7,300 - 12,399	40	57	24,0	
16	épaulement		ZH16-04	12,400 - 20,509	45	72	31,0	
25	avec épaulement et clavette	LSC	ZH25-01	19,510 - >	70	105	34,0	
16		LSC NO	ZH16-02	1,850 - 12,399	50	58	47,5	
16	avec épaulement	LSC SS S	ZH16-33	12,400 - 20,509	50	77	47,5	
10	GKT avec	V.////////	ZH10-06	1,850 - 7,299	60			M6x0,5
16	filetage	LS	ZH16-15	1,850 - 12,399	80			M10x1
25	métrique		ZH25-08	6,000 - 19,509	100			M16x1,5
10	GKT avec	TO	ZH10-28	7,300 - 12,399	60	77		M6x0,5
16	filetage métrique	LSC	ZH16-22	12,400 - 20,509	80	105		M10x1
25	avec broche	LS	ZH25-10	19,509 - >	100	140		M16x1,5
12,7			ZH12,7-00	1,850 - 9,699	38,1		25,3	
19,05		X	ZH19,05-01	3,960 - 14,899	70		45,0	
25,4	pouces	LS	ZH25,4-00	6,000 - 19,509	70		57,5	
31,7			ZH31,7-00	9,700 - 25,609	70		57,5	
38,1			ZH38,1-00	9,700 - 32,609	70		57,5	
19,05		X	ZH19,05-11	14,900 - 24,609	70	97	45,0	
25,4	pouces	LSC S	ZH25,4-01	19,510 - >	70	100	57,5	
31,7	avec broche	LS	ZH31,7-01	25,610 - >	70	110	57,5	
38,1		X	ZH38,1-01	32,610 - >	70	110	57,5	MCo.
10	VDI 2200	P NOO	ZH10-44	1,850 - 6,749	60	68	35	M6x0,5
16	VDI 3208	LSC	ZH16-31	1,850 - 10,799 6,000 - 19,509	80	90	37	M10x1
16	VDI 2200	LS X	ZH25-34 ZH16-66	10,800 - 16,399	100 80	112	45 37	M16x1,5
25	VDI 3208 avec broche	LSC LS	ZH25-40	19,510 - 42,699	100	142	45	M16x1,5
DCON	= Diamètre d'at	tachement LSC = Longueur de serrage	LS = Longueur d	'attachement				

Douilles de serrage

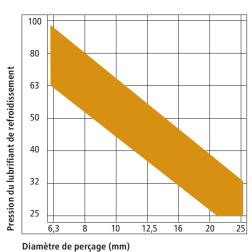
Type 120 / Type 122 / Type 125

Douilles de serrage pour les forets à deux lèvres de coupe avec tête de forage brasée – aperçu

	Désignation		pour conce	pour conception de la longueur de l'outi			X =	
DCON douille (mm)	Туре	Illustration	N° de plan botek	pour Ø foret (mm) de - à	LSC	LS avec collerette à souder et/ ou broche	Position de la zone de serrage	TD = fils
16 20 28	Douille de réglage avec filetage trapézoïdal	X X S S S S S S S S S S S S S S S S S S	SH16-00 SH20-00 SH28-00	1,850 - 12,899 1,850 - 14,899 6,000 - 21,509	112 126 126		73,0 82,0 82,0	TR16x1,5 TR20x2 TR28x2
36 16 25	Speed-Bit	X	SH36-00 ZH16-21 ZH25-16	8,700 - 28,609 1,850 - 12,399 6,750 - 19,509	162 40 50		109,0 28,0 35,0	TR36x2
35 16 25	Speed-Bit	LS	ZH35-00 ZH16-30 ZH25-20	9,700 - 28,609 12,400 - 20,509 19,510 - 30,609	60 40 50	67 77	40,0 28,0 35,0	
35 10 12	avec épaulement	LSC LS	ZH35-01 ZH10-40 ZH12-18	28,610 - > 1,850 - 7,299 1,850 - 8,999	60 40 45	100	40,0	
16 20 25 32	DIN 6535-HA	LS	ZH16-11 ZH20-01 ZH25-11 ZH32-24	1,850 - 12,399 5,000 - 15,899 6,000 - 19,509 9,700 - 25,600	48 50 56 60			
40 10 12	DIN 1835-A40		ZH40-03 ZH10-41 ZH12-19	9,700 - 23,600 9,700 - 32,609 7,300 - 12,399 9,000 - 15,899	70 40 45	57 62		
16 20 25	DIN 6535-HA ou 1835-A avec épaulement	LSC LS	ZH16-20 ZH20-60 ZH25-21	12,400 - 20,509 15,900 - 25,603 19,510 - 42,699	48 50 56	75 77 86		
32 40 10 12		X	ZH32-23 ZH40-04 ZH10-11 ZH12-07	25,610 - 45,699 32,610 - > 1,850 - 7,299 1,850 - 8,999	60 70 40 45	100 110	23,5	
16 20 25	DIN 6535-HB DIN 6535-HB	LS X	ZH16-32 ZH20-29 ZH25-22	1,850 - 12,399 1,850 - 15,899 6,000 - 19,509	48 50 56		29,0 30,5 38,0	
32 40 50	DIN 1835-B32 DIN 1835-B40 DIN 1835-B50	LS	ZH32-10 ZH40-13 ZH50-05	9,700 - 25,609 9,700 - 32,609 15,900 - 42,699	60 70 80		43,0 47,0 54,0	
10 12 16 20 25	DIN 6535-HB ou 1835-B	X NO	ZH10-23 ZH12-02 ZH16-53 ZH20-34 ZH25-31	7,300 - 12,399 9,000 - 15,899 12,400 - 20,509 15,900 - 25,609 19,510 - >	40 45 48 50 56	57 62 75 77 86	23,5 26,5 29,0 30,5 38,0	
32 40 50	avec épaulement	LSC	ZH32-11 ZH40-14 ZH50-06	25,610 - > 32,610 - > 42,700 - >	60 70 80	100 110 120	43,0 47,0 54,0	
10 12 16 20 25 32 40	DIN 1835-E	LS NOO	ZH10-20 ZH12-08 ZH16-47 ZH20-40 ZH25-36 ZH32-12 ZH40-18	1,850 - 7,299 1,850 - 8,999 1,850 - 12,399 1,850 - 15,899 6,000 - 19,509 9,700 - 25,609 9,700 - 32,609	40 45 48 50 56 60 70		28,0 33,0 36,0 38,0 44,0 48,0 66,0	
10 12 16 20 25 32 40	DIN 1835-E avec épaulement	LSC LS	ZH10-24 ZH12-05 ZH16-51 ZH20-43 ZH25-37 ZH32-13 ZH40-17	7,300 - 12,399 9,000 - 15,899 12,400 - 20,509 15,900 - 29,609 19,510 - > 25,610 - > 32,610 - >	40 45 48 50 56 60 70	57 62 75 77 86 100	28,0 33,0 36,0 38,0 44,0 48,0 66,0	
10 12 16 20	DIN 6535-HE	LS S	ZH10-29 ZH12-13 ZH16-62 ZH20-55	1,850 - 7,299 1,850 - 8,999 1,850 - 12,399 1,850 - 15,899	40 45 48 50		28,0 33,0 36,0 38,0	
10 12 16 20	DIN 6535-HE avec épaulement	LSC LS	ZH10-30 ZH12-14 ZH16-70 ZH20-56	7,300 - 12,399 9,000 - 15,899 12,400 - 20,509 15,900 - 29,609	40 45 48 50	57 62 75 77	28,0 33,0 36,0 38,0	
	= Diamètre d'attacheme	nt LSC = Longueur de serrage LS = I	ongueur d'atta				•	


Valeurs indicatives Type 120 / Type 122 / Type 125

Valeurs indicatives pour l'application de forets à deux lèvres en tête brasée


Groupes de matériaux	Fonte GG (< 300 N/mm²) GGG (< 400 N/mm²) Fonte malléable GTW, GTS «facile à usiner»	Fonte GG (> 300 N/mm ²) GGG (> 400 N/mm ²) GJV	Métaux non-ferreux (bronze, laiton) «copeaux courts»	Aluminium + Fonte d'aluminium, contenu Si >5% «facile à usiner»			
Vitesse de coupe m/min	70 - 100	60 - 90	70 - 120	100 - 180			
Ø foret	Avance (mm) / rotation						
(mm)	de - à	de - à	de - à	de - à			
6,0 - 7,99	0,04 - 0,08	0,03 - 0,07	0,04 - 0,08	0,06 - 0,13			
8,0 - 9,99	0,05 - 0,11	0,05 - 0,10	0,05 - 0,11	0,09 - 0,18			
10,0 - 13,99	0,08 - 0,16	0,07 - 0,14	0,08 - 0,16	0,12 - 0,24			
14,0 - 17,99	0,10 - 0,21	0,09 - 0,18	0,10 - 0,21	0,16 - 0,32			
18,0 - 21,99	0,13 - 0,26	0,10 - 0,21	0,13 - 0,26	0,19 - 0,38			
> 22,0	0,15 - 0,31	0,12 - 0,25	0,15 - 0,31	0,22 - 0,44			

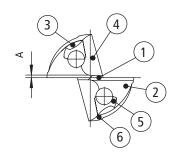
La vitesse de coupe et l'avance dépendent de la situation de perçage, de la longueur de l'outil, du lubrifiant de refroidissement, du matériau de la pièce, de la stabilité des éléments de la machine et du serrage de la pièce. Tous détails sont des valeurs indicatives.

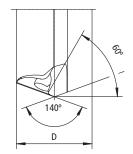
Quantité de lubrifiant de refroidissement

Pression du lubrifiant de refroidissement

Une évacuation sûre des copeaux n'est garantie que si le lubrifiant de refroidissement est fourni à l'outil en quantité suffisante. Ces diagrammes presentent nos recommandations concernant la pression et la quantité de liquide de refroidissement en fonction du diamètre et de la profondeur du foret.

La **viscosité requise de l'huile** de forage profond pour les diamètres de forage \leq est de 18 mm à environ. 15 mm²/s et pour des diamètres de perçage > 18 mm à plus de 15 mm²/s.

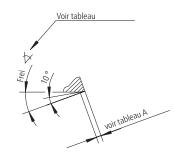

Lors de l'utilisation d'une émulsion, les pressions spécifiées (p) peuvent être réduites jusqu'à 20 %.

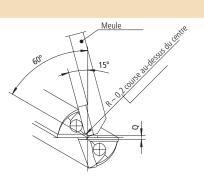

Un filtrage de 5 µm à 20 µm est nécessaire pour tous les diamètres d'outils.

Informations techniques

Instruction d'affûtage pour affûtage standard Type 120 / Type 123

Instruction d'affûtage



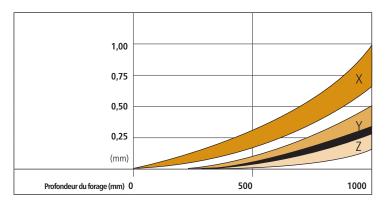

Valeurs de réglage et étapes de travail

Étape de travail	Angle de rotation	Angle dépouille	Angle de rotation	Dimension cf. tableau	Observation
1	20°	10°	0°	А	Meuler chanfrein de coupe 2ème lame 180°
2	20°	Ø 3,000 - 6,009 25° Ø 6,010 - 43,009 20°	0°		affûter dépouille 2ème lame 180°
3	10°	35°	0°		affûter dépouille 2ème lame 180°
4 000	60°	0°	Meule 15°	Q	Amincissement 2ème lame 180°
5	15°	0°	0°		affûter jusqu'au centre du trou du canal de refroidissement Lame 2 180°
6 30°	60°	0°		C	étirer chanfrein manuellement

Valeurs de réglage (mm)

Ø foret	A listel de coupe	Q + 0,1	C cassage anguilaire	R Rayon
3,000 - 6,009	0,4	0,4	0,5	1,0
6,010 - 10,009	0,4	0,5	0,5	1,0
10,010 - 15,009	0,5	0,6	0,6	1,5
15,010 - 20,009	0,6	0,8	0,7	2,0
20,010 - 25,009	0,7	0,9	0,8	2,5
25,010 - 30,009	0,8	1,0	0,9	3,0
30,010 - 35,009	0,9	1,1	1,0	3,5
35,010 - 40,009	1,0	1,2	1,1	4,0
40,010 - 43,009	1,1	1,3	1,2	4,5

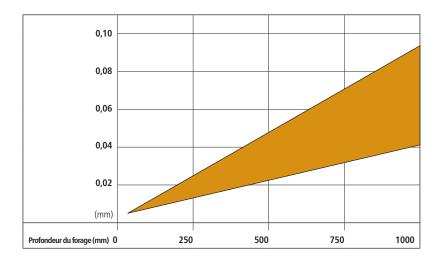
Qualité de forage


Déviation du forage

Les meilleurs résultats sont obtenus par rotation simultanée de l'outil dans un sens et de la pièce dans l'autre sens, le guidage du forage restant immobile (voir »Z«).

Comme les pièces à usiner sont de formes différentes et que les machines ont parfois leurs impératifs, le forage est souvent réalisé soit avec la pièce tournante (voir »Y«), soit avec l'outil tournant (voir »X«).

L'ajustement exact du guidage du forage a généralement une influence positive sur le décentrage axial. Une attention particulière doit être accordée à la qualité du diamètre du trou calibré ou du canon de perçage ainsi qu'à la position des axes du guidage par rapport au forage souhaité.


De mauvaises conditions de fonctionnement de la machine dégradent la qualité du résultat.

Grâce à la rigidité du tube, les forets à une lèvre en carbure monobloc obtiennent souvent des résultats encore meilleurs en termes de déviation et de rectitude de coupe.

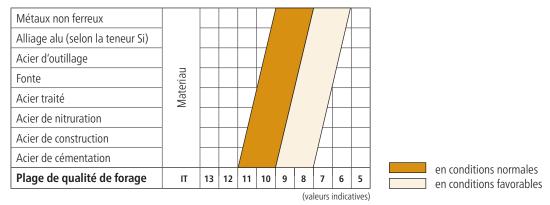
Rectitude du forage

La flexion du tube influence énormément la déviation et la rectitude du forage. Pour cette raison, il est nécessaire de guider les forets à une lèvre de grande longueur (à tête brasée) en faisant appel à des lunettes.

Circularité

Les tours réalisés avec des forets à une lèvre ne laissent rien à désirer quant à la précision de leur circularité. Ils surclassent largement les procédés conventionnels de perçage avec des forets hélicoïdaux. La meilleure précision est de l'ordre de 3 µm.

Annexe technique Qualité de forage

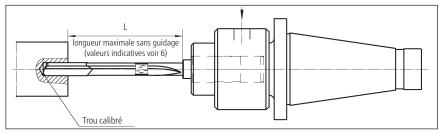

Pour obtenir des résultats de forage optimaux en utilisant les forets à une lèvre en carbure monobloc ou avec tête brasée, il faut tenir compte de plusieurs facteurs. Outre la qualité de l'outil, le bon état de la machine ainsi qu'un lubrifiant adapté au forage sont essentiels. Le choix de valeurs de coupe appropriées joue également un grand rôle.

Dans l'exécution technique des outils, il faut notamment tenir compte de:

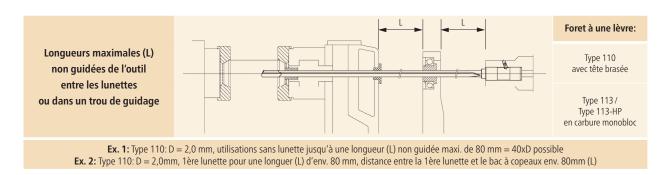
- la qualité du matériau, sa rigidité et son état
- le diamètre et la tolérance de perçage
- la géométrie périphérique
- la qualité du carbure / du revêtement
- la géométrie de coupe

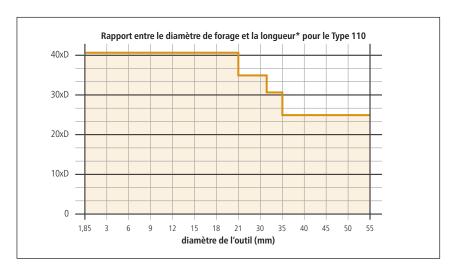
En complément d'une technique de fabrication éprouvée et précise, garantissant une qualité constante et aussi élevée que possible, de nombreuses expériences pratiques sont nécessaires pour parvenir à des solutions optimales.

Tolérances de forage réalisables


Etat de surface

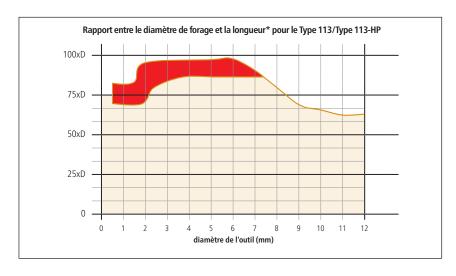
Classe de rugosité		N8	N7	N6	N5	N4	N3
Plage de qualité							
Rugosité de surface	Rt μm	21	11,5	6,2	3,4	1,9	1,0
	Ra µm	3,2	1,6	0,8	0,4	0,2	0,1
	Rz μm	14	7,6	4,5	2,2	1,2	0,65
						(valeurs	indicatives)


en conditions normales en conditions favorables


Conseils d'application pour outils de forage botek (foret à une lèvre)

- 1. Avant d'utiliser les outils, vérifier que les conditions sont réunies pour que la machine fonctionne en toute sécurité pendant le forage! Les dispositifs d'étanchéité ou de recouvrement destinés à sécuriser la machine doivent procurer une protection suffisante à l'opérateur contre d'éventuelles projections de solides (p.ex. copeaux) ou fuites de lubrifiant de refroidissement (émulsion ou huile de forage). Adressez-vous au fabricant de votre machine!
- 2. **Toute manipulation ou utilisation impropre d'un outil de forage peut entraîner des blessures graves**, p.ex. coupures en cas de contact sans précaution avec la / les face(s) coupante(s).
- 3. En raison de leur forme de construction, les outils de forage présentent un déséquilibre. C'est la raison pour laquelle ils doivent être introduits **lors du perçage** avec la pointe du foret dans un canon de perçage ou un trou calibré suffisamment long (voir schéma ci-dessous). Les valeurs indicatives pour le guidage du perçage figurent en page 5.

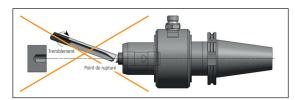
- 4. **A l'arrêt** ou à très basse vitesse de rotation (< 50 t/min), l'outil doit être introduit dans le canon de perçage ou le trou calibré. Une fois cette opération terminée, il est possible d'activer l'alimentation en liquide de refroidissement et d'augmenter la vitesse
- 5. **Une fois le forage terminé,** couper l'arrivée de liquide de refroidissement et sortir le foret du trou calibré avec l'outil à larrêt ou tournant à vitesse très réduite (< 50 t/min).
- 6a. **Guidage de l'outil: ne jamais dépasser la / les longueur(s) non guidée(s) de l'outil (L)** figurant dans le tableau 6a ci-dessous! Dans le cas contraire, l'outil risque de casser ou de patiner dans tous les sens de façon incontrôlée!
- 6b. Valeurs indicatives pour le guidage de l'outil avec les forets à une lèvre botek en carbure monobloc ou à tête en carbure brasée (sans lunettes).



Lors d'une utilisation avec trou calibré, voir les recommandations en page 5 »Valeurs indicatives pour le guidage du forage«.

*Rapport entre longueur ≜ longueur non guidée maxi (cf. point 3)

Conseils d'application pour outils de forage botek (foret à une lèvre)


La zone marquée en rouge constitue une zone critique dans laquelle il faut procéder avec une avance réduite (25 % maxi de la valeur indiquée dans le catalogue) et surtout avec une vitesse de rotation réduite (50 %). Cela veut dire qu'un outil ayant p. ex. un diamètre de 1,6 mm ne peut être exploité avec l'avance et la vitesse de rotation indiquées dans le catalogue que si la longueur libre sortant du canon de perçage ou du trou calibré ne dépasse pas 70xD. A partir d'un diamètre de 7 mm, le rapport entre la longueur et la diamètre se situe dans la zone verte. Lors d'une utilisation avec trou calibré, observer les recommandations en page 5 »Valeurs indicatives pour le guidage du forage« (profondeur et diamètre du tour calibré).

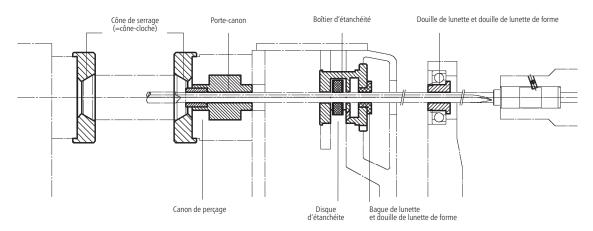
* Rapport entre longueur ≜ longueur non guidée maxi (cf. point 3)

Forets à deux lèvres de coupe:	Ø forage D	Longueurs maximales libres L de l'outil
	2,800 - 6,999	env. 80 x D
en carbure monoblanc	7,000 - 12,000	env. 55 x D
monoplane	12,001 - 20,000	env. 50 x D
	4,000 - 9,999	env. 60 x D
avec těte de forage soudée	10,000 - 19,999	env. 55 x D
lorage soudee	20,000 - 43,009	env. 50 x D

Version brasée : jusqu'à Ø 17,5 : longueur d'outil maximale de 2700 mm possible. A partir de Ø 17,5 : longueur totale jusqu'à 4500 mm.

- 7. L'affûtage ou le réchauffement du carbure libèrent des substances nocives (p. ex. carbure de tungstène, cobalt, etc.) Veillez à respecter les seuils prescrits par la loi pour les émanations de produits toxiques en prévoyant des aspirations adéquates et d'autres mesures (p. ex. lunettes, vêtements de protection).
- 8. **Conséquences du non-respect** de nos conseils de mise en œuvre n° 1 6a

L'utilisation incorrecte de nos outils de forage ou la non-observation de nos recommandations d'application peut entraîner des dommages aux personnes et/ou aux biens.

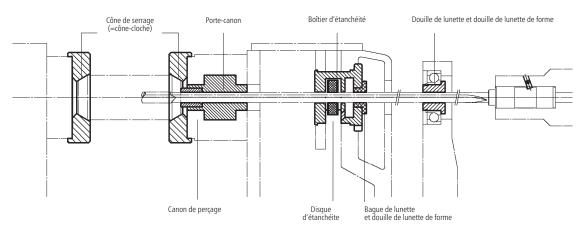

Danger de mort en cas de casse de l'outil ou de patinage incontrôlé de l'outil!

Veuillez observer que tous les conseils d'application ou valeurs indiquées dans cette brochure sont données à titre indicatif. Nous déclinons toute responsabilité pour les dommages résultant d'une manipulation impropre de nos outils de forage, d'erreurs de maniement, de conditions d'exploitation insuffisantes de la machine ou d'utilisation impropre de non outils!

Vous avez encore des questions? N'hésitez pas à prendre contact avec notre **hotline technique ELB: T +33 3870 2703-0.** Nous vous conseillons volontiers.

Accessoires d'usinage

Type 113 / Type 113 - HP / Type 110 / Type 112 / Type 114 / Type 115



Cônes cloche de serrage en acier trempé disponibles en stock dans différentes versions.

Douille de lunette de forme	1,850 - 11,799 1,850 - 15,399 1,850 - 25,609 1,850 - 36,699 1,850 - 25,609 1,850 - 25,609 1,850 - 36,699 1,850 - 32,600 Ø outil (mm) 3,960 - 12,399	20 25 30 45 35 30 45 40	22 22 26 26 26 26 26 26 26	12 12 16 14 14 13	Pour toute commande, indiquer le	170-05-4-2650 170-05-4-1060 170-05-4-1238 170-05-4-1341 170-05-4-2227	792 000 508 792 000 509 792 000 511 792 000 512
Douille de lunette de forme	1,850 - 25,609 1,850 - 36,699 1,850 - 25,609 1,850 - 25,609 1,850 - 36,699 1,850 - 32,600 Ø outil (mm)	30 45 35 30 45 40	26 26 26 26 26	16 14 14 13	commande, indiquer le	170-05-4-1238 170-05-4-1341	792 000 511 792 000 512
Douille de lunette de forme	1,850 - 36,699 1,850 - 25,609 1,850 - 25,609 1,850 - 36,699 1,850 - 32,600 Ø outil (mm)	45 35 30 45 40	26 26 26 26	14 14 13	commande, indiquer le	170-05-4-1341	792 000 512
Douille de lunette de forme	1,850 - 25,609 1,850 - 25,609 1,850 - 36,699 1,850 - 32,600 Ø outil (mm)	35 30 45 40	26 26 26	14 13	indiquer le		
Douille de lunette de forme	1,850 - 25,609 1,850 - 36,699 1,850 - 32,600 Ø outil (mm)	30 45 40	26 26	13		1/0-05-4-222/	
Douille de lunette de forme	1,850 - 36,699 1,850 - 32,600 Ø outil (mm)	45 40	26			170 05 4 2270	792 000 510
	1,850 - 32,600 Ø outil (mm)	40			Ø extéreur (D)	170-05-4-2278 170-05-4-2279	792 000 513 792 000 514
	Ø outil (mm)			15	-	170-05-4-2279	792 000 514
		D	L	11	d	n°plan	n°de référence
		20	20	12		170-05-4-1809	792 000 516
	4,750 - 22,609	30	26	14	Pour toute	170-05-4-1810	792 000 517
	4,750 - 22,609	30	26	16	commande, indiquer le	170-05-4-1818	792 000 518
	7,800 - 36,699	45	26	16	Ø outil et le	170-05-4-1812	792 000 519
	29,610 - 50,000	75	40	20,3	Ø extéreur (D)	170-05-4-1816	792 000 520
Bague de lunette	Ø outil (mm)	D	L	d		n°plan	n°de référence
	1,850 - 12,399	22,6	15	Pour toute commande, indiquer le Ø outil		170-06-4-1180	792 000 535
Disques d'étanchéité	Ø outil (mm)	D	L		d	n°plan	n°de référence
T R	1,850 - 5,749	20	3				792 000 500
	3,960 - 5,749	32	3	Pour to	ute commande.	170-07-1572	792 000 501
	5,750 - 20,509	32	4	1	uer le Ø outil		792 000 501
	5,750 - 25,609	40	4	et le Ø	extérieur (D)	-	792 000 502
	23,610 - 49,999	90	4				792 000 503
Disques d'étanchéité renforcés	Ø outil (mm)	D	L		d	n°plan	n°de référence
Roues de profil	2,900 - 5,249	20	7			170-07-4-3885	792 000 504
Disgues	5,250 - 16,399	32	11	Pour to	ute commande,	170-07-4-3886	792 000 505
d'étanchéité	16,400 - 25,999	40	12	indiq	uer le Ø outil	170-07-4-3887	792 000 506
L	26,000 - 40,999	90	12			170-07-4-2708	792 000 507
Canons de perçage					d	n°plan	n°de référence
	Canons de perçage c DIN 179-A en acier format l Canons spéciaux	à outils tr ong	empé,		ute commande, uer le Ø outil	170-04	

Accessoires d'usinage

Type 123 / Type 120 / Type 122 / Type 125

Cônes cloche de serrage en acier trempé disponibles en stock dans différentes versions.

Douille de lunette	Ø outil (mm)	D	L	I1	d	n°plan	n°de référence
	1,850 - 11,799	20	22	12		170-05-4-2650	792 000 508
	1,850 - 15,399	25	22	12		170-05-4-1060	792 000 509
	1,850 - 25,609	30	26	16	Pour toute	170-05-4-1238	792 000 511
	1,850 - 36,699	45	26	14	commande, indiquer le	170-05-4-1341	792 000 512
	1,850 - 25,609	35	26	14	Ø outil et le	170-05-4-2227	792 000 510
 [] 	1,850 - 25,609	30	26	13	Ø extéreur (D)	170-05-4-2278	792 000 513
	1,850 - 36,699 1,850 - 32,600	45 40	26 26	16 15	_	170-05-4-2279 170-05-4-3897	792 000 514 792 000 515
Douille de lunette de forme	Ø outil (mm)	D D	L 20	l1	d	n°plan	n°de référence
Double de lanette de lonne	5,000 - 12,399	20	20	12	Pour toute	170-05-4-1813	792 000 533
					commande,		
11 8	5,000 - 22,899	30	26	14	indiquer le Ø outil et le	170-05-4-1814	792 000 522
	7,800 - 27,000	45	26	16	Ø extéreur (D)	170-05-4-1815	792 000 534
Bague de lunette	Ø outil (mm)	D	L		d	n°plan	n°de référence
	1,850 - 12,399	22,6	15	Pour toute commande, indiquer le Ø outil		170-05-4-1180	792 000 535
Disques d'étanchéité	Ø outil (mm)	D	L		d	n°plan	n°de référence
	5,000 - 20,509	32	4		oute commande, Juer le Ø outil	170-07-4-1417	
	5,000 - 27,000	40	4		extérieur (D)	170 07 4 1417	
Disques d'étanchéité renforcés	Ø outil (mm)	D	L		d	n°plan	n°de référence
	5,000 - 5,749					170-07-4-142204	
	5,750 - 6,749					170-07-4-142205	
	6,750 - 7,599					170-07-4-142206	
	7,600 - 8,699	1				170-07-4-142207	
Profilscheiben	8,700 - 9,999	32				170-07-4-142208	
		- 32					
Dichtscheibe	10,000 - 11,299	-				170-07-4-142209	
L	11,300 - 12,899	-	12		ute commande,	170-07-4-142210	
1	12,900 - 14,399	-		inaiq	uer le Ø outil	170-07-4-142211	
	14,400 - 16,399		-			170-07-4-142212	
	16,400 - 17,899					170-07-4-142213	
	17,900 - 20,799					170-07-4-142214	
	20,800 - 22,899	40				170-07-4-142215	
	22,900 - 24,899					170-07-4-142216	
	24,900 - 27,000				170-07-4-142217		
Canons de perçage					d	n°plan	n°de référence
8	Canons de perçage cylinc A en acier à outils tre Canons spéciaux	empé, forma	it long	Pour toute commande, indiquer le Ø outil		170-04	

Accessoires d'usinage

Porte-canon petit format en versions A et B (selon la plage de forage)	Plage de forage (mm) de - à	L	l1	Version	d	n°plan et version
	0,500 - 2,699	88,5	17			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,700 - 5,099	87,5	16			
11 54,5 A	5,100 - 8,099	86,5	15	A	Pour toute commande,	170-03-3-2538
	8,100 - 12,099	88,5	14	ou B	indiquer le Ø outil et la version	A, B
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12,100 - 15,099	83,5	12			
	15,100 - 18,099	81,5	10			
Porte-canon grand format en versions A et B (selon la plage de forage)	Plage de forage (mm) de - à	L	l1	Version	d	n°plan et version
97777	1,800 - 2,699	117	17			
85 0 1 1 68 A	2,700 - 5,099	116	16			
	5,100 - 8,099	115	15	Α		
	8,100 - 12,099	114	14	ou B	Pour toute commande,	170-03-3-2979
8 0 1 1 68 B	12,100 - 15,099	112	12	indiquer le Ø ou et la version		A, B ou C
11 68 D	15,100 - 18,099	110	10		-	
7,1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18,100 - 30,099	106	6			
11 68 C	30,100 - 35,099	103	-	С		
Boîtier d'étanchéité	Ø outil (mm)			d		n°plan
		Pou	ır toute com	mande, indi	quer le Ø outil	
Ø 60 Ø 22.25	avec bague de lunette pour Ø 1,850 - 12,399				ð 1,850-12,399 mm, il pague de lunette	170-01-03-1570
38 55	2 1/000 1=/000	Dou		ette et disquander sépa	ue d'étanchéité arément	
Boîtier d'étanchéité (à roule- ment à billes rainuré et circlip)	Ø outil (mm)			d		n°plan
38 82 82 82 84 84 84 85 86 86 86 86 86 86 86 86 86 86 86 86 86	avec bague de lunette pour Ø 1,850 - 25,609 avec douille de lunette pour	Pou Douille (existent et disq u	170-01-4-1809			
55	Ø 5,750 - 22,609					

Système d'arrosage – rotatif

Pour outils de perçage profond avec arrosage intérieur – Ø d'outil 2,50 à 115,00 mm

Haute pression (sur demande) 93-014/93-015

Gamme de perçage Ø 2,5 - 25 mm


- jusqu'à 100 bar
- particulièrement adapté aux outils de perçage profond botek
 Type 110 / Type 113 / Type 01

Basse pression / grande quantité 93-003

Gamme de perçage Ø 9,90 - 115,00 mm

- Débit jusqu'à 250 l/min.
- particulièrement adapté aux outils de forage profond botek Type 01/02/07/07A/08/09

Alimentation pour douille	Caractéristiques techniques	Support Variantes	
Weldon 25 N° de commande 93-003200-2563	Vitesse de rotation : 4500 tr/min Pression : 100 bar Finesse de filtration recommandée : 30 μm Quantité de lubrifiant : 100 l/min	DIN 69871-1 / ISO 7388-1 A40 N° de commande 97-2001-4063050 DIN 69871-1 / ISO 7388-1 A50 N° de commande 97-2001-5063027	
Weldon 25 N° de commande 93-003400-2563	Vitesse de rotation : max. 3000 tr/min Pression : max. 20 bar	MAS 403 BT ISO 50 N° de commande 97-2006-5063040 DIN 2080-1 A50 N° de commande 97-2003-5063027 DIN 69893-1/ISO 12164-1 HSK A63	
Weldon 32 N° de commande 93-003400-3263	Finesse de filtration recommandée: 30 µm Quantité de lubrifiant: max. 160 l/min	N° de commande 97-2004-6363090 DIN 69893-1/ISO 12164-1 HSK A100 N° de commande 97-2004-10063090 Capto C6/ISO 26623-1 PSC 63 N° de commande 97-2005-C6-V63080	
Weldon 40 N° de commande 93-003600-4080		DIN 69871-1 / ISO 7388-1 A50 N° de commande 97-2001-5080027 DIN 69871-1 / ISO 7388-1 A60 N° de commande 97-2001-6080030	
Weldon 50 N° de commande 93-003600-5080	Vitesse de rotation: max. 2000 tr/min Pression: max. 12 bar Finesse de filtration recommandée: 30 μm Quantité de lubrifiant: max. 250 l/min	MAS 403 BT ISO 50 N° de commande 97-2006-5080040 DIN 2080-1 A50 N° de commande 97-2003-5080027 DIN 69893-1 / ISO 12164-1 HSK A100 N° de commande 97-2004-10080090 Capto C8 / ISO 26623-1 PSC 80 N° de commande 97-2005-C8-V80065	

Accessoires d'usinage

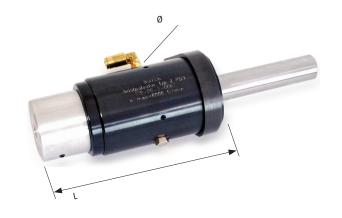
Pulsateur axial

Pulsateur axial

botek a développé le pulsateur axial pour maximiser l'utilisation des forets à goujures droites et profondes, en particulier dans l'acier et les matériaux à copeaux longs.

Toutes les caractéristiques de qualité qui caractérisent le perçage avec les forets à une ou deux lèvres - telles que la qualité de surface élevée, la ligne centrale de perçage basse et les valeurs optimales pour la rectitude et la circularité - peuvent être obtenues de manière particulièrement économique en combinaison avec le pulsateur. Et ce, avec une grande capacité de traitement.

Grand pulsateur


Diamètre de perçage: 4,0 mm à 12,0 mm Vitesse max.: 6.000 tr/min réglable seulement par le fabricant

Ø: 70 mm Poids: 4,4 kg L: 160 mm

Diamètre de perçage: jusqu'à 4,0 mm Vitesse max.: 11.000 tr/min

ajustable Ø: 50 mm Poids: 1,3 kg L: 137,5 mm

Autres dimensions de construction sur demande.

Exemples d'application

Cuivre	sans pulsateur	avec pulsateur	avec pulsateur		
Outillage	Foret à une lèvre de coupe Type 110	Foret à une lèvre de coupe Type 110	Foret à deux lèvres de coupe Type 123		
Diamètre (mm)	8,0	8,0	8,0		
V _f (mm/min)	40	120	200		
Acier	sans pulsateur	avec pulsateur	avec pulsateur		
Acier Outillage	sans pulsateur Foret à une lèvre de coupe Type 110	avec pulsateur Foret à une lèvre de coupe Type 110	avec pulsateur Foret à deux lèvres de coupe Type 123		
1	•	•	•		
Outillage	Foret à une lèvre de coupe Type 110	Foret à une lèvre de coupe Type 110	Foret à deux lèvres de coupe Type 123		

Les valeurs ci-dessus sont des valeurs indicatives qui peuvent différer de votre application.

Vous avez encore des questions?

N'hésitez pas à prendre contact avec notre hotline technique: T +33 3870 2703-0. Nous vous conseillons volontiers.

Coffre de mesure de la pression du lubrifiant

Valises de mesure pour le contrôle de la pression du lubrifiant sur les centres d'usinage et les perceuses profondes.

L'expérience montre que l'indication du manomètre de la pompe ne reflète pas la pression réelle au niveau de l'outil. De nombreuses sources d'erreur, telles que des pièces de valve non étanches, des guides de rotation défectueux ou des tubes flexibles pliés, ne sont pas visibles à la première lecture. Ne sont pas visibles au premier coup d'œil et peuvent conduire à une pression plus faible et donc à un mauvais résultat de forage.

Le système de mesure de pression développé par botek mesure la pression réelle à la sortie de la broche / de l'outil. (jusqu'à 160 bar max.). La mesure tient compte de la dimension du trou de lubrification de l'outil.

Les méthodes de mesure suivantes sont disponibles:

1. Mesure de la puissance de la pompe sur la machine:

Le grand avantage de ce système de mesure est qu'il permet, à l'aide d'un outil factice il est possible d'effectuer un contrôle indépendant de l'outil.

2. Mesure avec l'outil:

Le mannequin d'outil est remplacé par l'outil de forage. La pression au niveau de l'outil peut alors être vérifiée.

Pour BAZ Porte-pinces ER-32 avec queue cylindrique Ø 16 (h5) mm/Ø 20 (h5) mm/Ø 25 (h5) mm, y compris écrou pour montage de rondelle d'étanchéité	1 pièce	1*
Pinces de serrage ER 32 (4/6/8/10/12/16/20 mm)	7 pièce	2
Rondelles d'étanchéité (4/6/8/10/12/16/20 mm)	7 pièce	3
Mannequins pour simulation d'outils	14 pièce	4
Clé à fourche pour logement	1 pièce	5
Clé de serrage pour écrou	1 pièce	6
Pour perceuse profonde		
Logement spécial pour douille 25x100 /112 selon VDI 3208 (ZH25-34)*. Si nécessaire, le logement est adapté à une autre douille de serrage.	1 pièce	7*
Pour tours automatiques et centres d'usinage de petite taille		
Logement de mannequin Ø 10 mm/Ø 45 mm	Logement u.	8*
y compris 4 mannequins	4 mannequins	
Clé Allen SW 8	1 pièce	9
Valise en aluminium	1 pièce	

^{*} Les manomètres peuvent être livrés avec une « aiguille traînante » moyennant un léger supplément de prix. (Utilisé lorsqu'il n'y a pas de contact visuel avec le manomètre pendant le test.)

Machines à rectifier

Affûteuse d'outils Type MS-01

- pour l'affûtage de petites séries
- machine stable et particulièrement pratique
- peut être montée à tout moment sur une table ou un établi
- les dispositifs d'affûtage de Type ZS ou PS peuvent être installés sans problème sur cette machine

N° de commande 729000105

Caractéristiques techni	ques				
Déplacement longitudinal de la table	250 mm				
Déplacement transversal de la table	160 mm				
Réglage vertical de la tête de ponçage	160 mm				
Vitesse de rotation de la meule	2850 tr/min				
Diamètre maximal de la meule	150 mm				
Tension de service*	380 V/50 Hz				
Couleurs	RAL 7035 gris clair				
*Tension spéciale sur dem	nande				

Rectifieuse multipostes MS-12 et MS-12/3

Les grandes séries avec la même géométrie de coupe peuvent être affûtées de manière particulièrement économique sur l'affûteuse multipostes MS-12 de botek.

Cette machine convient pour des outils de Ø 1,850 à 12,000 mm et pour des longueurs d'outils allant jusqu'à 1000 mm environ.

L'affûteuse botek est disponible en deux versions:

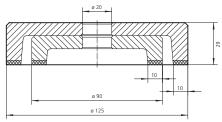
N° de commande 729000117

MS-12/3

3 broches Ø d'outil de 1,85 à 12,000 mm Longueur d'outil jusqu'à env. 1000 mm N° de commande 729000262

Supports de ponçage / accessoires MS-01

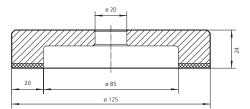
Dispositif de ponçage botek ZS / PS



Les dispositifs **d'affûtage botek** permettent de réaffûter les forets à une lèvre sur toute bonne affûteuse d'outils. Les dispositifs d'affûtage botek sont disponibles - selon le Ø de l'outil - en tant que Types ZS (voir illustration à gauche) ou PS (pour forets à une lèvre en carbure).

Meule double

Le double disque d'affûtage est conçu pour le réaffûtage des forets monolobes dans une plage de diamètres de 2,001 à 45 mm. Le disque extérieur sert au pré-affûtage, il est doté d'une granulométrie grossière, ce qui permet d'obtenir une grande capacité d'enlèvement de matière avec un faible impact sur l'outil. échauffement de l'outil. Le disque intérieur est doté d'un revêtement abrasif très fin et sert au ponçage de finition. En ajoutant le moins possible de matière abrasive, on obtient une qualité de surface optimale avec un faible échauffement de l'outil.



Remarque: Nous recommandons d'affûter les diamètres de forets >32,0 mm sur des machines plus grandes.

Plage de Ø	Ø extérieur	Ø d'alésage	Aspect du meulage	N° de commande
2.001 45.0 mm	125 mm	20.0 mm	nour un aspact de maulage normal	125000212
2,001 - 45,0 mm	90 mm	20,0 mm	pour un aspect de meulage normal	125000213
2.001 4F.0 mm	125 mm	20,0 mm	pour un aspect de meulage fin	125000212
2,001 - 45,0 mm	90 mm	20,0 111111	pour un aspect de mediage im	125000217

Meule boisseau

La meule boisseau convient pour le réaffûtage des forets à une lèvre dans une plage de diamètres de 0,5 à environ 2,0 mm. La granulométrie de la meule est choisie de manière à ce qu'une très bonne qualité d'affûtage permette un enlèvement de matière suffisant sans échauffement notable de l'outil de l'outil est garanti.

Plage de Ø	N° de commande
0,500 - 2,000 mm	125000218

des forets à une lèvre monobloc en version haute performance Type 113-HP

Particulièrement indiqué pour l'application sur CU (avec émulsion) – disponible départ entrepôt*

Type de carbure: HP1

Affûtage: $< \emptyset \ 5,0 = SA-0504 \ge \emptyset \ 5,0 = SA-0503$

Forme:

Douille de serrage: Ø 10 x 40 / 55 mm DIN 6535-HA10 (ZH10-51) à partir d'un diamètre outil 8 mm sans douille

Douilles / Tolérance de la tige: h6 (convient pour l'hydro-expansion & la rétraction)

Revêtement TIN

DC	Davilla		20 x D			30 x D			40 x D			
DC	Douille	OAL	BT	LCF	OAL	BT	LCF	OAL	BT	LCF		
2.00			Ì		145	60	88	165	80	108		
2,00						702 002 100			702 002 101			
3,00		150	60	93	180	90	123	210	120	153		
3,00			702 002 102	2		702 002 103	3		702 002 104			
4,00		170	80	113	210	120	153	250	160	193		
4,00			702 002 105)	702 002 106				702 002 107			
5,00		195	100	138	245	150	188	295	200	238		
3,00			702 002 108	3		702 002 109)	702 002 110				
6,00		215	120	158	275	180	218	335	240	278		
0,00			702 002 111		702 002 112			702 002 113				
7,00					310	210	248					
7,00				,		702 002 114						
8,00	Ø 8 x 40				340	260	300	420	340	380		
0,00	00140					702 002 115)		702 002 134			
9,00	Ø 8 x 40	260	180	220								
9,00	Ø 0 A 40		702 002 116									
10,00	Ø 10x40				380	300	340	480	400	440		
10,00	W 10X40					702 002 117	7		702 002 135			

^{*}Dans les limites du stock – vente intermédiaire réservée

Particulièrement indiqué pour l'application sur les machines de forage à grande profondeur (avec huile pour forage à grande profondeur) – disponible départ entrepôt*

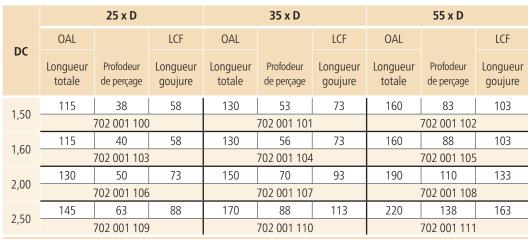
Type de carbure: HP1 **Affûtage:** SA-0504 **Forme:** G

Douille de serrage: Ø 10 x 40 / 55 mm DIN 6535-HA10 (ZH10-51)

Revêtement XT

	20 x D			25 x D			40 x D			50 x D			55 x D			60 x D	
OAL	BT	LCF	OAL	BT	LCF	OAL	BT	LCF	OAL	BT	LCF	OAL	BT	LCF	OAL	BT	LCF
			110	38	53							195	83	138			
1,5			70	2 002 1	18	·						70	2 002 1	19			
115	40	58													195	120	138
702 002 120		20													70.	2 002 1	21
130	50	73													230	150	173
70.	2 002 1	22										702 002 123		23			
145	60	88													265	180	208
70.	2 002 1	24												702 002 125		25	
175	80	118													335	240	278
70.	2 002 1	26													70.	2 002 1	27
205	100	148				305	200	248				380	275	323			
70.	2 002 1	28				702	702 002 129				702 002 130						
235	120	178				355	240	298	405	300	348				475	360	418
70.	2 002 1	31				702	2 002 1	32	70.	2 002 1	33			702 002 136		36	
	115 702 130 702 145 702 175 702 205 702 235	OAL BT 115 40 702 002 1 130 50 702 002 1 145 60 702 002 1 175 80 702 002 1 205 100 702 002 1 235 120	115 40 58 702 002 120 130 50 73 702 002 122 145 60 88 702 002 124 175 80 118 702 002 126 205 100 148 702 002 128	OAL BT LCF OAL 110 115 40 58 702 002 120 130 50 73 702 002 122 145 60 88 702 002 124 175 80 118 702 002 126 205 100 148 702 002 128 235 120 178	OAL BT LCF OAL BT 110 38 702 002 1 115 40 58 702 002 120 130 50 73 702 002 122 145 60 88 702 002 124 175 80 118 702 002 126 205 100 148 702 002 128 235 120 178	OAL BT LCF OAL BT LCF 110 38 53 702 002 118 702 002 118 115 40 58 702 002 120 130 50 73 702 002 122 145 60 88 702 002 124 175 80 118 702 002 126 205 100 148 702 002 128 235 120 178	OAL BT LCF OAL BT LCF OAL 110 38 53 3 702 002 118 702 002 118 3 3 115 40 58 3 3 702 002 120 3 3 3 3 702 002 122 3 3 3 3 145 60 88 3 3 3 702 002 124 3 3 3 3 175 80 118 3 3 3 205 100 148 3	OAL BT LCF OAL BT LCF OAL BT 110 38 53	OAL BT LCF OAL BT LCF OAL BT LCF 110 38 53	OAL BT LCF OAL 110 38 53 Image: State of the color o	OAL BT LCF OAL BT CAL CAL </td <td>OAL BT LCF OAL BT LCF</td> <td>OAL BT LCF OAL BT TOC TOC DA AD AD</td> <td>OAL BT</td> <td>OAL BT</td> <td>OAL BT</td> <td>OAL BT LCF OAL DAL <</td>	OAL BT LCF	OAL BT LCF OAL BT TOC TOC DA AD AD	OAL BT	OAL BT	OAL BT	OAL BT LCF OAL DAL <

des forets à une lèvre monobloc Type 113


Affûtage: Affûtage standard

Forme: G

Douille de serrage: Ø 10 x 40 / 55 mm DIN 6535-HA10 (ZH10-51)

Sans revêtement

disponible départ entrepôt*

^{*}Dans les limites du stock – vente intermédiaire réservée

Affûtage: Affûtage standard

Forme: G

Douille de serrage: Ø 10 x 40 / 55 mm DIN 6535-HA10 (ZH10-51)

Revêtement XT

disponible départ entrepôt*

		25 x D			35 x D			45 x D			55 x D	
DC	OAL		LCF									
DC	Longueur totale	Profodeur de perçage	Longueur goujure									
3,00	160	75	103	190	105	133				250	165	193
3,00	7	702 001 112	2	702 001 113						702 001 114		
3,50	175	88	118	210	123	153	245	158	188			
3,30	7	702 001 11!	5	702 001 116			7	702 001 11	7			
4.00	185	100	128	225	140	168	265	180	208			
4,00	7	702 001 118	3	7	702 001 119	9	702 001 120					
5,00	215	125	158	265	175	208	315	225	258			
3,00	7	702 001 12	1	7	702 001 122	2	702 001 123					
6.00	240	150	183	300	210	243	360	270	303			
6,00	7	702 001 124	4	7	702 001 12	5	7	702 001 126	5			
40	12. 24. 1			/ I· · /	,							

^{*}Dans les limites du stock – vente intermédiaire réservée

Fabrication express

Forets à une lèvre monobloc Type 113

Le programme de livraison de la fabrication urgente couvre les pièces suivantes*:

				ire LCF (m						r de gouju		
0	20 - 52	53 - 77		101 - 157	158 - 237	238 - 327	DC	20 - 52	53 - 77		101 - 157	158
	Χ	Χ	Χ				3,30		X	X	Х	
	X	X	Χ				3,35		X	X	X	
)	Χ	Х	Χ				3,40		Х	X	Х	
	Χ	Х	Χ				3,45		X	Х	Х	
I	Χ	X	Χ				3,50		Х	Χ	X	
	Χ	X	Χ				3,55		X	Χ	Х	
	Χ	X	Χ				3,60		X	Χ	Х	
	Χ	X	Χ				3,65		Х	X	Х	
	Χ	Χ	Χ	Х			3,70		Х	Χ	Х	
		Х	Χ	X	Χ		3,75		Х	Χ	Х	
		X	Χ	X	Χ		3,80		X	X	Х	
		X	Χ	Х	Χ		3,85		Х	Х	Х	
		Χ	Χ	X	Χ		3,90		X	X	Х	
		Χ	Χ	X	Χ		3,95		X	Χ	X	
		Χ	Χ	Χ	Χ		4,00		X	Χ	Χ	
5		Χ	Χ	X	Χ		4,05		Х	Х	Х	
)		Χ	Χ	Х	Χ		4,10		Х	Χ	Х	
		Χ	Χ	Х	Χ		4,15		X	Χ	Χ	
		Χ	Χ	Х	Χ		4,20		Х	Χ	Х	
		Х	Х	Х	Χ		4,25		Х	Х	Х	
0		Х	Χ	Х	Χ		4,30		Х	Х	Х	
5		Х	Х	Х	Х		4,35		Х	Х	Х	
)		Х	Χ	Х	Χ		4,40		Х	Χ	Х	
		Х	X	Х	Х		4,45		Х	Х	Х	
1		Х	Χ	Х	Χ		4,50		Х	Х	Х	
		Х	Χ	Х	Χ		4,55		Х	Х	Х	
		Χ	Χ	Х	Χ		4,60		Х	Χ	Х	
		Х	Х	Х	Х		4,65		Х	Х	Х	
		Х	Χ	Х	Χ		4,70		Х	Х	Х	
		Х	Χ	Х	Χ		4,75		Х	Х	Х	
		Χ	Χ	Х	Χ		4,80		Х	Χ	Х	
		Х	Х	Х	Х		4,85		Х	Х	Х	
		Χ	Χ	Х	Χ		4,90		Х	Х	Х	
		Х	Χ	Х	Χ		4,95		Х	Х	Х	
		Х	Χ	Х	Χ		5,00		Х	Х	Х	
5		Х	Х	Х	Х		5,05		Х	Х	Х	
)		Х	Χ	Х	Χ		5,10		Х	Х	Х	
		Х	Х	Х	Х		5,15		Х	Х	Х	
0		Х	Χ	Х	Χ		5,20		Х	Х	Х	
5		Х	Х	Х	Х		5,25		Х	Х	Х	
0		X	Χ	Х	Χ		5,30		Х	Х	Х	
55		X	X	X	X		5,35		X	X	X	
50		X	X	X	X		5,40		X	X	X	
55		Х	Х	Х	Х		5,45		Х	Х	Х	
70		Х	Χ	Х	Χ		5,50		Х	Х	Х	
75		Х	Х	Х	Х		5,55		Х	Х	Х	
30		Х	Χ	Х	Χ		5,60		Х	Х	Х	
85		Х	Х	Х	Х		5,65		Х	Х	Х	
90		X	X	X	X		5,70		X	X	X	
95		X	X	X	X		5,75		X	X	X	
00		X	X	X	X	Х	5,80		X	X	X	
05		X	X	X	X	, ,	5,85		X	X	X	
0		X	X	X	X	Х	5,90		X	X	X	
5		X	X	X	X		5,95		X	X	X	
0		X	X	X	X	Х	6,00		X	X	X	
25		X	X	X	X	7.	6,05		X	X	X	
		diaires sur		1 1	, · ·				diaires sur			1

^{*}Dans les limites du stock – vente intermédiaire réservée

53 - 77 | 78 - 100 | 101 - 157 | 158 - 237 | 238 - 327

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Χ

Mesures intermédiaires sur demande

46

*Dans les limites du stock – vente intermédiaire réservée

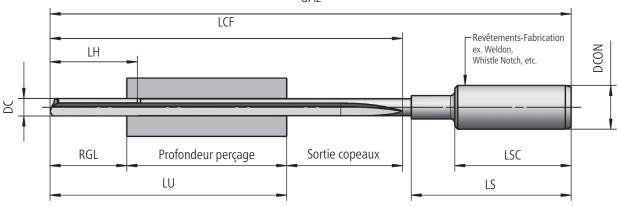
Type de carbure: S20

Affûtage: Affûtage standard

Forme: G
Douille de serrage:

Illustration	Mesure DCONxLSC/LS (mm)	Fabrication	Désignation douille de botek	Diamètre outillage (mm)
LSC SO	Ø 4 x 34 / 46		ZH4-08	0,5 - 5,0 mm
LSC SO	Ø 6 x 36 / 50		ZH6-12	0,5 - 4,5 mm
LSC SO	Ø 10 x 40 / 55	Particulièrement indiqué pour mandrins hydrauliques et pinces de serrage	ZH10-51	0,5 - 6,0 mm
LSC SO	Ø 12,7 x 38/48		ZH12,7-01	0,5 - 6,0 mm
15 15° LS PO	Ø 10 x 115/130		VH10-04	0,5 - 6,0 mm

Autres douilles sur demande


Délai de livraison: Sans revêtement: max. 5 jours ouvrables

Revêtement TIN: max. 10 jours ouvrables Revêtement XT: max. 10 jours ouvrables

(autres revêtements sur demande)

Quantités plus importantes sur demande

OAL

Forets à une lèvre avec tête brasée Type 110

Fabrication: Outil Type 110 avec douille Ø 10 x 40 mm (ZH10-00)

Type de carbure: K1 **Forme:** G

Affûtage standard: SA-0001 (40°/30°)

DC/OAL	N° de commande lors de la longueur totale								
DC/ OAL	200 mm	300 mm	400 mm	500 mm	600 mm	800 mm			
2,50				702 000 211	702 000 212	702 000 213			
3,00	702 000 100	702 000 102	702 000 205	702 000 206	702 000 207	702 000 208			
3,50					702 000 210				

Dans les limites du stock – vente intermédiaire réservée

Fabrication: Outil Type 110 avec douille Ø 25 x 70/78 mm (ZH25-00)

Pour les longueurs marquées par un astérisque, la longueur peut être raccourcie en utilisant une douille à cône (25 x 70 / 105 [ZH25-01])

Type de carbure: K15 **Forme:** G

Affûtage standard: SA-0001 (40°/30°) pour forets Ø 4,0 mm

SA-0002 (30°/20°) pour forets Ø 5,0 mm à 20,0 mm SA-0003 (20°/15°) pour forets à partir de Ø 22,0 mm

	N° de command	e lors de la longu	eur totale			
DC/OAL	200 mm	300 mm	400 mm	500 mm	600 mm	800 mm
4,00	702 000 101	702 000 103	702 000 107	702 000 123	702 000 214	702 000 215
5,00	702 000 217	702 000 104	702 000 108	702 000 124	702 000 133	702 000 150
6,00	702 000 219	702 000 105	702 000 109	702 000 125	702 000 134	702 000 151
6,50			702 000 110			702 000 152
7,00	702 000 221	702 000 106	702 000 111	702 000 126	702 000 135	702 000 153
8,00	702 000 223	702 000 224	702 000 112	702 000 127	702 000 136	702 000 154
8,50			702 000 113			702 000 155
9,00		702 000 227	702 000 114	702 000 128	702 000 137	702 000 156
10,00		702 000 230	702 000 115	702 000 129	702 000 138	702 000 157
11,00		702 000 233	702 000 116	702 000 130	702 000 139	702 000 158
11,50			702 000 264	702 000 265	702 000 266	702 000 267
12,00		702 000 234	702 000 117	702 000 131	702 000 140	702 000 159
13,00		702 000 238	702 000 118	702 000 132	702 000 141	702 000 239
14,00		702 000 240	702 000 119		702 000 142	702 000 160
15,00			702 000 120		702 000 143	702 000 161
16,00		702 000 245	702 000 121	702 000 246	702 000 144	702 000 162
17,00			702 000 260	702 000 261	702 000 262	
18,00			702 000 122	702 000 247	702 000 145	702 000 163
19,00					702 000 146	702 000 164
20,00			702 000 249	702 000 250	702 000 147	702 000 251
22,00				702 000 252	702 000 148	
24,00			702 000 254	702 000 255	702 000 256	702 000 257
25,00			702 000 253		702 000 149	

Dans les limites du stock – vente intermédiaire réservée

N° de commande lors de la longueur totale										
1000 mm	1000 mm 1200 mm 1300 mm 1500 mm 1800 mm 2000 mm									
702 000 209										

Fabrication express

Nous pouvons fabriques les outils qui ne sont pas dans notre programme de stock dans les **24 h**, à condition que tous les composants soient en stock ou après consultation.

Demandez nous: T: +33 3870 2703-0 · info@botek.fr

N° de commande lors de la longueur totale										
1000 mm	1200 mm	1300 mm	1500 mm	1800 mm	2000 mm					
702 000 216										
702 000 165	702 000 218									
702 000 166	702 000 220									
702 000 167	702 000 184									
702 000 168	702 000 222		702 000 195							
702 000 169	702 000 185	702 000 225	702 000 196	702 000 226						
702 000 170	702 000 186									
702 000 171	702 000 228		702 000 229							
702 000 172	702 000 187	702 000 189	702 000 197	702 000 231	702 000 232					
702 000 173										
702 000 268		702 000 269	702 000 270		702 000 271					
702 000 174	702 000 235	702 000 190	702 000 198	702 000 236	702 000 237					
702 000 175		702 000 191								
702 000 176	702 000 241	702 000 192	702 000 242							
702 000 177		702 000 193	702 000 199	702 000 243	702 000 244					
702 000 178	702 000 188	702 000 194	702 000 200							
702 000 263										
702 000 179			702 000 201							
702 000 180	702 000 248		702 000 202							
702 000 181			702 000 203							
702 000 182										
702 000 258	702 000 259									
702 000 183			702 000 204							

Foret pilote en carbure monobloc avec lubrification interne Type 153-03

Revêtement: XT

Type queue de serrage: DIN 6535 HA

Angle de pointe: 140°
Affûtage: SA-0174

	3 x D							
DC h5	OAL	LCF	DCON h6					
DCIIS	Longueur totale	Longueur de goujure	Ø de serrage	N° de commande				
2,000	50	12	6	702 004 100				
2,500	50	12	6	702 004 101				
3,000	62	15	6	702 004 102				
3,500	62	17	6	702 004 103				
4,000	62	20	6	702 004 104				
5,000	62	25	6	702 004 105				
6,000	66	28	6	702 004 106				
6,500	79	34	8	702 004 107				
7,000	79	34	8	702 004 108				
8,000	79	41	8	702 004 109				
8,500	89	47	10	702 004 110				
9,000	89	47	10	702 004 111				
10,000	89	47	10	702 004 112				
11,000	102	55	12	702 004 113				
12,000	102	55	12	702 004 114				
12,020	107	60	14	702 004 115				
12,500	107	60	14	702 004 116				
12,520	107	60	14	702 004 117				
12,700	107	60	14	702 004 118				
13,000	107	60	14	702 004 119				
13,500	107	60	14	702 004 120				
14,000	107	60	14	702 004 121				
14,020	115	65	16	702 004 122				
14,500	115	65	16	702 004 123				
15,000	115	65	16	702 004 124				
15,020	115	65	16	702 004 125				
15,500	115	65	16	702 004 126				
16,000	115	65	16	702 004 127				
16,020	123	73	18	702 004 128				
16,500	123	73	18	702 004 129				
17,000	123	73	18	702 004 130				
17,500	123	73	18	702 004 131				
18,000	123	73	18	702 004 132				
18,020	131	79	20	702 004 133				
18,500	131	79	20	702 004 134				
19,000	131	79	20	702 004 135				
19,500	131	79	20	702 004 136				
20,000	131	79	20	702 004 137				
20,020	131	79	20	702 004 138				

Formulaire de demande / commande Type 113 / Type 113-HP / Type 110

E-mail: bote	ek@bote	k.fr		Demande	☐ Commande (v	euillez cocher la cas	e appropriée)
N° client : Adresse:							
Nom du client:				 Téléphor	 ne:		
Tâche: Matériau: Machine:	☐ Forer☐ Acier☐ CU		□ Aléser □ GG/GGG □ Machine	forage profond	Alliage Al-Si		
Ø (DC)	Longueur (OAL)	Profondeur perçage (mm)	Mesures douille (DCONxLSC / LS)	Douille DIN / N° de commande douille	Revêtement	Quantité	Date de livraison
Type 113-HP/T	iype 113	LH RGL	LCF Profondeur perçage	OAL Sortie copeaux	Type de douill p.ex. Weldon, Whistle Notch, etc.	DCON DCON	
Type 110	D	LH RGL	LCF Profondeur perçage LU	OAL Sortie copeaux	Type de douille p.ex. Weldon, Whistle Notch, etc.	DCON	
☐ Type 113 ☐ Type 113-HP ☐ Type 110 Mode d'expédit	PForet à une Foret à une tion: □	lèvre de coupe e		loc – modèle standar loc – modèle à haut r e soudée	endement urgente travail s vous es la fabrie par le s	olément est facturé po es en raison du délai d upplémentaire occasi t communiqué avant l cation. Dans le cadre e ervice de fabrication u s est limité	e livraison et du onné. Ce supplément e début de d'une commande
Date:			Signatu	ıre:			

Formulaire de demande / commande Type 123 / Type 120

E-mail: bot	ek@bote	ek.fr		Demande	☐ Commande (v	euillez cocher la cas	e appropriée)
N° client :				N° de co	mmande:		
Adresse:				Adresse (de livraison:		
Nom du client:				 Téléphor			
Tâche:	☐ Forer		☐ Aléser				
Matériau: Machine:	☐ Acier ☐ CU		☐ GG / GGG	forage profond	Alliage Al-Si		
Ø (DC)	Longueur (OAL)	Profondeur perçage (mm)	Mesures douille (DCONxLSC/LS)	Douille DIN / N° de commande douille	Revêtement	Quantité	Date de livraison
2 0 -	LH	Profondeur	LCF perçage	Sortie copeaux	Type de do p.ex. Weldon, Whistle Notch	etc.	- DCON
☐ Type 123 ☐ Type 120 Mode d'expédi	Foret à une		pe en carbure mon avec tête de forage	obloc – modèle stan e soudée	urgente travail s vous esi la fabric par le se	olément est facturé po s en raison du délai d upplémentaire occasi t communiqué avant l ation. Dans le cadre de ervice de fabrication u s est limité	e livraison et du onné. Ce supplément e début de d'une commande
Date :			Signatu	re:			

Fabrication express

Le service de FABRICATION URGENTE de botek vous propose la fabrication rapide d'outils qui ne sont pas compris dans notre programme de stock.

Type 113

Foret à une lèvre

en carbure monobloc à trou oblong plage de diamètre: 0,500 - 12,000 mm

Type 110

Foret à une lèvre

avec tête en carbure monobloc à trou oblong 1 trou d'arrivée d'huile – plage de diamètre: 1,850 - 7,059 mm 2 trous d'arrivée d'huile – plage de diamètre: 7,060 - 51,200 mm

Type 112

Foret à une lèvre

avec tête en carbure monobloc trou oblong ou avec 2 trous suivant l'étage plage de diamètre: 2,000 - 51,200 mm

Type 115

Foret à une lèvre étagé alésoir

en carbure monobloc plage de diamètre: 2,000 - 51,200 mm

Type 120

Foret à deux lèvres

avec tête en carbure monobloc plage de diamètre: 6,000 - 43,009 mm

Type 01/07

Foret avec inserts changeable

plage de diamètre: 9,900 - 43,99 mm plage de diamètre: 25,000 - 50,99 mm

Plus d'informations dans le catalogue «Outils de forage Type 01, 02, 07, 07A »

- → Commandez rapidement et facilement par fax ou email.
- → Vous trouverez un formulaire de commande sur la page 51/52.

Service

Essais clients dans notre service essais:

- Développement d'outils spécialement adaptés à votre besoin particulier
- Assistance lors de l'introduction de nouvelles techniques
- Solutions des problèmes d'usinage

Ensemble, nous trouverons la solution. Interrogez-nous.

Réaliser des processus sécurisés de forages profonds et précis. Nous sommes à vos côtés pour:

Disséquer les processus: Indiquez-nous vos besoins de forage et nous disséquerons alors complètement le processus de forage, en vous prêtant assistance depuis la conception jusqu'à la transposition réussie.

Optimisation des processus: Nos techniciens, ingénieurs en application, en tant que professionnels compétents, analysent et améliorent sur place vos processus et optimisent parfaitement l'outil pour le travail.

Coût de fabrication réduit grâce à:

- Optimisation des données de coupe
- Optimisation des temps d'attente de l'outil
- Réduction des temps morts
- Maximisation de la capacité de processus

Le département d'essais de botek est également en mesure de vous assister au cours de toutes les phases du processus par:

- Tests de faisabilité
- Essais d'optimisation
- Formation et entraînement pour vos utilisateurs

Nous serions heureux de pouvoir répondre à vos défis.

Service après-vente


L'assistance à nos clients ne s'arrête pas à la livraison de l'outil –

ELLE NE FAIT QUE COMMENCER.

Service de revêtement

botek vous propose en interne un service de revêtement rapide et économique. Nous serions heureux d'effectuer ce travail pour vous!

Service d'affûtage

botek vous propose en interne un service d'affûtage rapide et économique. Nous serions heureux d'effectuer ce travail pour vous!

Regarnissage

Les outils sont pourvus d'une nouvelle tête d'carbure (à la condition que le tube de forage et la douille de serrage soient utilisables).

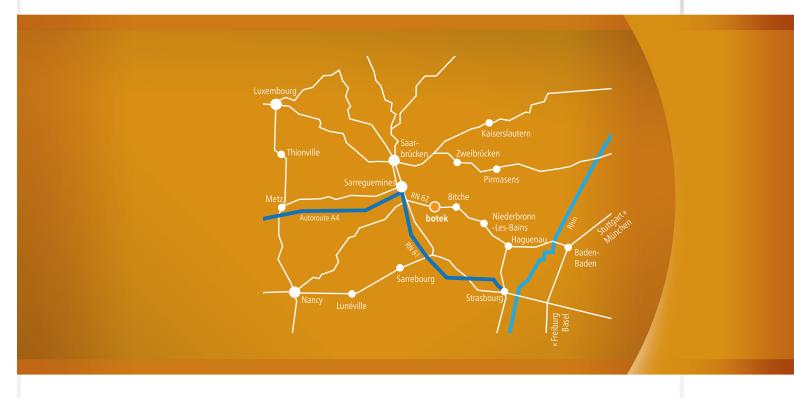
Fabrication express

La fabrication express botek permet de produire rapidement des outils qui ne font pas partie de notre programme de stock.

La gamme de produits comprend les outils suivants:

- Forets à une lèvre / deux lèvre avec tête brasée Type 110 / Type 120
- Forets à une lèvre monobloc Type 113
- Forets à une lèvre avec plaquette Type 01

Nous vous conseillons volontiers.



botek Sarl

Route de Strasbourg 57410 Petit-Réderching France

T +33 3870 2703-0 **F** +33 3870 2758-0

Courriel botek@botek.fr **www**.botek.fr

